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Abstract

Several seismic precursors and earthquake-causing variables have been proposed in the

last decades based on physical considerations and case observations, however none has

been confirmed on long datasets using linear analysis. This work adopts an information-

theoretical approach to investigate the occurrence of causal flow between these precurs-

ors and causing variables and seismicity. It starts by introducing the key concepts in

seismology and presenting the current main precursor candidates. Four variables will be

considered as possible precursors or anomalies leading to earthquakes: large tidal amp-

litudes, temporal fluctuations in the Gutenberg-Richter’s b-value, surface gravity changes,

and preceding anomalous seismicity patterns. To perform the causality test between these

variables and their effects, it is developed a method which allows the fast calculation

of Transfer Entropy for any two time-series, detecting the direction of the flow of in-

formation between the variables of interest. The method is tested to coupled logistic

maps and networks with different topologies before application to geophysical events.

The analysis shows mutual information relating to coupling strength and also allows in-

ference of the causal direction from data using the Transfer Entropy, both in bivariate

systems and in networks. The method was then applied to the earthquake analysis for

an interval of 4018 days on an area comprising the Japan trench. Within a conservative

margin of confidence, the results could not at this point confirm any of the four pre-

cursor options considered, but future work can clarify initial suggestions regarding tidal

amplitudes link to seismicity, and pre-seismic gravity changes and cumulative daily mag-

nitude anomalies. The Matlab/Octave codes for our method are open-source and available

at https://github.com/artvalencio/causality-toolbox. We hope the method is able to sup-

port the quest for other precursor candidates, and to assist other fields of knowledge.
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Foreword

On 5 September 2016 the European Seismological Commission gathered in Trieste, Italy,

for the opening of its biennial General Assembly. Coincidently, a major earthquake oc-

curred only two weeks before, on the evening of the 24 August, with epicentre in the

Central Apennines. The town of Amatrice was severely hit, with over 240 deaths, in-

cluding members of a seismology team. The seismic event echoed the one occurred

seven years before in the neighbouring town of L’Aquila, which made over 65,000 people

homeless and was considered a national catastrophe. In the case of L’Aquila event, the

limitations in forecasting and alerting the population about the earthquake led to contro-

versial judicial disputes. The possibility of history repeating itself triggered a rush, of

rescue actions from the part of Civil Protection and related personnel, reconstruction and

retrofitting from the part of civil engineers, and scenario analysis and testing of earth-

quake prediction hypothesis from the part of seismologists. The 35th General Assembly

of European Seismological Commission became a key stage to these discussions, with

special sessions dedicated exclusively to the analysis of the Amatrice event. A significant

fraction of the presentations focused on the physical description and case observations

of earthquake precursors, especially for L’Aquila and Amatrice. However, there was no

consensual agreement on any of the options displayed (which is part of the healthy sci-

entific discussion). At the occasion, I was only presenting a preliminary, but surprisingly

tricky, stage of the data analysis (tide removal of a geophysical time-series). Yet, it was

clear that there was a big gap of knowledge on the identification of precursors, for which

information-theory could help solving. This led to this work, an initial effort in fulfilling

this gap. I hope it can support the identification of a seismic precursor in future.



Glossary

Seismology and Geodesy
• F: Force vector

• T: Traction vector

• σ : Stress tensor

• ε: Strain tensor

• δi j: Kronecker delta

• λ : First Lamé parameter

• µ: Shear Young modulus (second

Lamé parameter)

• U : Potential energy

• Mw: Moment magnitude

• ML: Local (Richter) magnitude

• Ms: Surface wave magnitude

• N: Number of earthquakes

• b-value: Gutenberg-Richter seismicity-

magnitude rate

• ts: Time-series sampling rate

• vp: P-wave velocity

• vs: S-wave velocity

• D: Epicentral distance

• δ t: time-difference of arrival of P and

S waves

• A: Peak amplitude of P-wave, as

measured from a Wood-Anderson seis-

mograph

• n(t): Frequency of aftershocks

• Λ: Seismicity rate function

• log L: Log-likelihood of set of seis-

mic events given an historic

• δg: Relative gravity, gravity change

• θ1: Colatitude

• θ2: Longitude

• m1, m2: Geolocation of polar cap
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Time-series Analysis,

Dynamical Systems and

Information Theory
• ts: Sampling time

• td: Delay time defining a window size

for local analysis

• nb: Number of initial bins (or alpha-

bet length)

• τ: Reconstruction delay for applica-

tion of Takens’ method

• M: System embedding dimension

• S: Symbol attributed on the first par-

tition

• φ : Symbol in the higher-order parti-

tioned space

• p: Probability of an event

• L: Length of the symbolic sequence

• H: Entropy

• I: Mutual information

• CaMI: Causal mutual information

• T E: Transfer entropy

• MIR: Mutual information rate

• CaMIR: Causal mutual information

rate

• T ER: Transfer entropy rate

• PMI: Pointwise mutual information

• PCaMI: Pointwise causal mutual in-

formation

• PT E: Pointwise transfer entropy

• DirIdx: Directionality index (net flow

of causal information)

• d: Time-delay for analysis

• NT : Total number of points

• σ : Coupling strength

• λ : Amplitude of dynamical noise

• r: Logistic map free parameter

• Ai j: Adjacency matrix terms

• ki: Degree of node i



Chapter 1

Introduction

1.1 Motivations

The Earth is dynamic. Its parts are constantly moving, settling, building up or releasing

stress, ejecting mass, reshaping convective fluxes, and so on [1–3]. The changes on the

planet surface can occur in the time-scale of millennia, such as the creation of mountains

or the drifts of continents, but also on time-scales as short as days or minutes. The latter

is the case of earthquakes, which are sudden ground shakes produced from energy release

on the Earth’s crust[3–7], lasting for about a few minutes. Small earthquakes happen on a

daily basis, but they are generally unnoticed or pass by producing no harmful effects [3].

However, when a large earthquake happens, it can have dire consequences: collapse of

buildings, trigger landslides or avalanches, liquefying the ground making structures sink

or float, trigger volcanic eruptions, and producing tsunamis. Although earthquake shaking

do not typically constitute a direct cause for death or injuries, all these consequences pose

a significant threat to vulnerable communities. Indeed, earthquakes are ranked by the

United Nations Office for Disaster Risk Reduction and the Centre for Research on the

Epidemiology of Disasters (UNISDR and CRED) as the natural hazard linked to most

deaths, accounting for 55.6% of the total fatalities catalogued in the period 1996-2015 on

the database EM-DAT [8]. Hence, it is important to distinguish the earthquake as an event

of nature, which can be understood as a hazard for its potential to cause disruption, and the

vulnerability of the citizens in the space they occupy. When we refer to the occurrence

of a disaster, the underlying condition for it is the social vulnerability to a hazard. It
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means that a seismic event in isolation, however strong it might be, cannot be considered

a disaster1. An example is given by comparing events of the similar magnitude and place

observing the disparity in number of affected people (Table 1.1). In the cases exemplified,

better building practices and civil protection policies were implemented as consequence of

major events in Mexico, Japan and Italy, which helped reducing the impacts when similar

events happened to strike again in the same regions. However, there is still significant

room for improvement, as the death toll and the number of homeless remain high.

Table 1.1: Comparison of death toll and number of homeless for similar seismic events (same
magnitude and region) in Italy (2009 and 2016), Mexico (1985 and 2017) and Japan (1995

and 2016)

Seismic event Magnitude (Mw) Death toll Number of homeless

2009 L’Aquila (Central Italy) 6.9 309 65000+

2016 Amatrice (Central Italy) 5.7 299 4500

1985 Mexico City 8.0 up to 45000 250000

2017 Chiapas (Mexico) 7.1 370 40000

1995 Kobe (Southern Japan) 6.9 6400 250000–300000

2016 Kumamoto (Southern Japan) 7.0 50 7000

There is no single recipe to reduce the social vulnerability to the seismic hazard. In

terms of prevention and preparedness strategies, the two main approaches are:

1. to adapt the built environment to resist to the ground movements and their con-

sequences, which is the object of research and practice of Earthquake Engineering;

2. to monitor and analyse the seismic phenomena, including understanding the past

events, definition of geologically vulnerable areas, and assessment of the likelihood

of future events, which are the primary objects of research and practice of Seismo-

logy.

The ultimate goal of seismology historically has been to be able to predict earth-

quakes. However, this has not yet been achieved, and it is an on-going discussion whether

it is even achievable [9]. Instead, the primary preparedness practice in the field focuses

1We expand the discussion of these concepts on Appendix A
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in detecting events near the source and broadcasting a warning to vulnerable populations

with a time advance of seconds to minutes before the arrival of the tremor. This pro-

cedure is often referred as EEW – Earthquake Early-Warning (Fig. 1.1). Unfortunately,

such strategy restricts the possible civil preparedness actions possible in heavily populated

areas, which become limited to ducking under a table or stepping away from windows so

to reduce the likelihood of physical injures in case of partial building collapse. These

measures might have a positive effect, but cannot prevent fatalities from total building

collapse. If more time is allowed, in the scale of hours to days before a large event, then

other options such as preventive evacuation and sheltering are available, with the potential

to save significantly more lives.

Figure 1.1: Simplified diagram of Earthquake Early-Warning (EEW) system. Adapted
from our publication on [10].

Intending to identify earthquakes with more time in advance, two currents in seis-

mology have developed: earthquake prediction and earthquake forecasting. The first

refers to the identification of events associated to earthquake occurrence, the precurs-

ors, and consequently their monitoring. The second is about probabilistic assessments of

future earthquakes considering past events. In principle, prediction and forecast can act

together, as the monitoring of a precursor could be incorporated into a probabilistic model

for future events. However, no reliable seismic precursor has yet been found, mostly due

to disagreements on whether the observed relation with a seismic event is indeed causal

or just a spurious correlation. This has not, though, curbed the efforts to find a precursor.

In this thesis we will mention a few phenomena being investigated in the field, such
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as foreshocks, strain and tilt changes, groundwater level variations, and crustal displace-

ment. Our particular focus will be in four cases: tidal triggering of earthquakes, fluc-

tuations in Gutenberg-Richter’s seismicity-magnitude rate (b-value), pre-seismic gravity

anomalies, and anomalous seismicity patterns. The purpose is not to unequivocally valid-

ate or discard any of these precursor candidates, but to use them as a testing ground for a

method able to identify a precursor in future.

1.2 Objective

In this work we will present a method based on information theory to analyse the causal

relation between two variables from their time-series. Approaches of causal analysis

from time-series gained notoriety with Granger’s studies on econometrics [11, 12], but

the original method was only applicable to linearisable models. The historical difficulties

encountered in identifying a precursor are indications that linear models are insufficient

for solving seismology problems, particularly earthquake prediction.

This work has the objective of offering an alternative or complementary method to

analyse causal relations between variables from the time-series even when the system

exhibits strong nonlinear behaviour. In particular, we are interested in performing this

analysis in a computationally efficient way, compatible with the necessities for earthquake

prediction.

The method that will be presented in the following chapters, Causal Mutual Inform-

ation (CaMI), is tested for a number of systems: fully stochastic, logistic map systems,

and real-world seismic and gravity data.

1.3 Structure of this thesis

Chapter 2 begins with a review in seismology, aiming to understand the specificities of

the type of physical phenomena and data to be analysed. The goals of this chapter are: to

describe what is an earthquake, how their occurrences are distributed, the key concepts in

observational seismology, the practices in earthquake forecasting and earthquake predic-

tion, and to provide a brief description of the instrumentation and systems that enabled
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the data collection. Aspects of this chapter were presented by the author on [10].

Chapter 3 presents the time-series considered, seismic and gravitational, followed

by the necessary pre-processing techniques for filtering and analysis. It proceeds by de-

scribing the dynamical systems used as testbench: the logistic map, and networks built

by coupling logistic maps. An aspect of pre-processing procedures in geophysical time-

series analysis (tidal removal) was presented by the author on [13].

In chapter 4 it is defined the quantities from Information Theory used in this work.

This include the Entropy and the Mutual Information over symbolic sequences, measure-

ments of the causal flow, such as the Transfer Entropy and the Causal Mutual Information

(CaMI), and the rate of the causal flow. The algorithm of the implementation and the com-

putational demands are also presented. The codes developed for this chapter are available

publicly as an open-source toolbox in https://github.com/artvalencio/causality-toolbox.

Chapter 5 shows the application of the method for the analysis of causality for the

testbench systems. The method is first tested against a null-hypothesis from two uni-

formily distributed random time-series, so to give a parameter of expected error levels.

Then, it is applied to a coupled logistic maps and networks. The latter exploits the case

where many events are simultaneously associated. For coupled maps, we apply pointwise

information measures to see how each region of the phase-space of the system contributes

differently to the obtained overall information measure. A manuscript containing results

from this chapter is currently in preparation.

In chapter 6 the method is applied on a 11 year period of the Japanese trench area.

The hypothesis investigated are: tidal triggering of earthquakes, temporal Gutenberg-

Richter’s b-value anomalies observed before earthquakes, pre-seismic gravity anomalies

observed before earthquakes, and anomalous seismicity patterns before large events. The

effects, i.e. the earthquake occurrence, was considered in three ways: occurrence of large

seismic event on a day (maximum daily magnitude exceeding a threshold), large cumu-

lative daily seismic magnitude (exceeding a threshold), and high daily seismicity rate

(number of earthquakes esceeding a threshold). The threshold values defining anomalous

events are obtained from data. Time-delayed effects are also considered. A manuscript

https://github.com/artvalencio/causality-toolbox
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containing results from this chapter is currently in preparation.

Finally, chapter 7 presents the conclusions from this research, including new ques-

tions in dynamical systems and seismology arisen from the development and application

of our approach, as well as the description of other disciplinary fields that could benefit

from the method.

Three appendices are included. Appendix A briefly discuss the definitions of dis-

asters, risk and hazards and how the media portrays these events. It relates to our work

on refs. [14–17]. Appendix B briefly describes the main stages of development of a geo-

physical instrumentation (cold atom gravimeter) that has the potential of contributing to

the field. Appendix C complements chapter 6, by showing the phase-space plots of the

data points of seismic precursors and seismic occurrence colour-coded by the pointwise

information quantities. These are tools for investigating the contribution of each point to

the overall mutual information or flow of information.

1.4 Summary of results

1.4.1 Development of a tool for analysis of causality from time-series

It is implemented a toolbox for estimation of Causal Mutual Information, Transfer En-

tropy and net flow of information between two variables from their time-series. In ad-

dition, the toolbox calculates the Mutual Information and the rates of the mentioned

information-theoretical quantities. It is considered that obtaining the Transfer Entropy

from the Causal Mutual Information is able to reduce the processing time, compared to a

standalone implementation for the Transfer Entropy. The processing times and memory

requirements of the current version for Matlab/Octave are presented, and the package is

available for use at https://github.com/artvalencio/causality-toolbox.

1.4.2 Application to test-bench systems

The test-bench system consists of coupled logistic maps and networks. The coupling

types considered are linear diffusive or coupled map lattice (normalising the coupling in-

tensities to contain network dynamics within the domain of validity of the maps). Often

https://github.com/artvalencio/causality-toolbox
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different behaviours were observed in the high and the low coupling regimes, such as for

the decrease of the information measures with the increase of the amplitude of an ap-

plied dynamic noise, or for the observation of the node with highest transfer entropy in

a network. The mutual information revealed a reliable indicator of the coupling strength

between two variables, whereas the directionality index, i.e. the net flow of causal in-

formation, is found to be an effective indicator of the true direction of causality.

1.4.3 Application to precursors and earthquake-causing variables

The method is applied to investigate four candidates of precursors and earthquake-causing

variables for a period of 11 years around the Japanese trench area, one of the most active

seismic zones in the planet. Information-theoretical values obtained are computed over

a range of possible delays between the precursor/cause and the seismicity/effect, up to a

maximum delay of 30 days. The threshold defining whats is an anomalous behaviour in

seismicity, b-value and gravity residuals is allowed to vary, and we select the case leading

to the largest causal mutual information.

In all cases it is not possible to conclusively state a causal influence of a candidate to

the occurrence of seismicity, as the values were close to the a conservative margin of con-

fidence of the method, drawn from comparison of the information quantities with those

obtained when applied to a uncoupled uniform random distribution with the same amount

of data points. However, in three cases there are initial indications of possible precursory

behaviour from the curve of the information-theoretical values with the time-delay ap-

plied between the variables. The first is regarding tidal amplitudes as seismicity triggers,

as there seems to be a correspondence in the mutual information between the two time-

series with a delay of 5–13 days. The second is regarding pre-seismic gravity changes,

as anomalies in the gravity residuals have higher mutual information with seismicity oc-

currence in a time lag of 8–15 days. The last is regarding to a preceding high cumulative

daily magnitude, which has a larger mutual information with large earthquake occurrence

(measured by maximum daily magnitude) on a delay of 11-15 days. The obtained values

are still comparable to our conservative margins of confidence, but future reanalysis, with

more data (reducing the error bars), might be able to confirm or discard such options.
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The method is openly available for the analysis of other seismic precursors and ap-

plications to other geographic areas and periods, according to availability of the datasets.

Additionally, it has been included in the computational tool the alternative of calculating

the information-theoretical quantities over a sliding window, enabling the real-time mon-

itoring of changing causal behaviour in a location, perhaps associated with changing geo-

morphological conditions. Furthermore, the pointwise information measures presented in

this work also define the regions of the phase-space most contributing for the overall in-

formation quantity. It means that it enables to inform which interval of a precursor/cause

is most connected to which region of the effect, by means of sharing most information

or by transferring most causal information. Unfortunately, due to insufficient data points,

the resolution of the pointwise information measures to the geophysical time-series is still

low, hence we leave the preliminary results to Appendix C. These approaches are also ap-

plicable to other fields aiming to infer causal relations from observed time-series, such as

Economics and Neurology.



Chapter 2

Overview of observational seismology

This chapter presents a landscape overview of the main features of natural seismic phe-

nomena and the current proposals for precursors or hypothesis of earthquake causes. The-

ories for the occurrence of earthquake events have been proposed since the ancient Greek

and Chinese civilizations [18, 19]. Nonetheless, the field of Seismology is considered to

have started only in the mid-19th century with the seismometers and first systematic ex-

periments with artificially generated earthquakes (using explosives as sources), which en-

abled comparison with naturally occurring phenomena [20]. The first networks of seismic

devices permitted a more detailed understanding of the Earth interior: the global layered

structure, the local underground geomorphology, the global patterns of earthquake oc-

currence, the existence and dynamics of tectonic plates, and so on [3–6] . However,

earthquakes also threaten vulnerable communities in the path of seismic waves, once, de-

pending on the intensity, they cause damage or destruction to the built environment [3, 6].

Consequently, one of the key goals of Seismology is to discover when and where seismic

events will occur, so communities can be better prepared. Two currents have developed,

earthquake forecasting, consisting of statistical models for predicting future events, and

earthquake prediction, consisting of the re-analysis of past events, looking for phenomena

that indicated earthquake occurrence in advance. For example, modern earthquake fore-

casting indicates, from present state of the Coulomb failure function, seismicity historic,

or other variables, what is the likelihood of an event tomorrow. Earthquake prediction, on
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the other hand, deals with analysis of earthquakes that have already occurred and invest-

igate if for those events (or set of events) it can be found a preceding anomaly or pattern in

another geophysical variable, from gravity changes to Radon variations and Gutenberg-

Richter’s b-value. This work focus on earthquake prediction, as the primary objective is

to present an approach to identify the causes or precursors for earthquakes, and not, at

this stage, to extrapolate to probabilities of future events. The chapter ends describing the

devices associated with the data used. For more details on observational seismology and

earthquake prediction, we recommend refs. [3–7, 21–24].

2.1 What is a seismic event?
A seismic event is a sudden movement in the interior and surface of the Earth. Typically,

it occurs when a geological fault under stress releases energy in form of slip movements

(displacements) and waves that propagate in the solid Earth, which is the main focus of

Seismology, and the main threat to communities. Seismic events that differ from this

mechanism, such as artificially generated earthquakes (no geological fault necessarily),

intraplate events (small fault or construction of a new fault), and ‘silent’ earthquakes (no

clear seismic waves), tend to pose a smaller risk to people.

2.1.1 Types of seismic source: faulting

Rock faulting is classified in strike-slip, dip-slip or a mix of them (Fig. 2.1), and the way

the faulting occurs define how the energy is released. In a strike-slip, the movement is

horizontal. Examples are the San Andreas fault in California and the Enriquillo-Plaintain

Garden fault which crosses Haiti capital, Port-au-Prince. These faults can produce large

earthquakes, and are the types associated with largest stress drop following a seismic

event [25]. In a dip-slip fault the movement is vertical. The dip-slip category is further

divided into two types: normal and reverse faulting. Normal is when the hanging-wall

block subsides respective to the foot-wall block. Globally, normal faulting produces a

lower proportion of large earthquakes compared to small earthquakes, relative to the other

mechanisms [26]. In reverse faulting, however, the hanging-wall moves further upwards.

In particular, if the angle of a dip-slip reverse faulting is small (< 45◦) it is referred as
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a thrust fault, and it is the configuration typically associated with the largest earthquakes

and production of large tsunami, such as 2004 Sumatra-Andaman and 2011 Tohoku. Most

seismic events are a mix of vertical and horizontal components, referred as oblique fault-

ing. Figure 2.2 shows, for a strike-slip event, the pattern observed for the first seismic

motion, whether it is compression or dilatation of the medium, depending on the station

location relative to the epicentre. From these patterns of first motions it is possible to infer

the faulting mechanism of an earthquake from a set of seismographs.

Figure 2.1: Different types of faulting associated with earthquakes.

Figure 2.2: Expected behaviour of the first motion near source for a strike-slip event.
The auxiliary plane is the plane perpendicular to the motion, containing the epicentre

2.1.2 Stress, strain and seismic waves

Consider a solid under the effect of a force F representing a portion of the solid Earth.

We can analyse how this force leads to the reshaping of the solid. In the infinitesimally

small cubes of face area dS constituting the object, this force is translated into tractions

(T = limdS→0 F/dS) for each cubic face, which then can be further decomposed in a
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preferred system of coordinates, creating a stress tensor σ (Fig. 2.3). Considering that the

material is not perfectly rigid, the infinitesimal elements will deform slightly, giving origin

to a strain tensor ε (Fig. 2.4 and Eq. 2.1). Perfect elasticity is modelled by Hooke’s law

for continuous media, σi j = ci jklεkl , relates the stress (σ ) and the strain (ε) tensors. The

mechanical properties of the medium are summarised by the the elastic moduli tensor c,

which is the equivalent of a spring constant. Hence, at this point we have only modelled a

small rock element as a (3-D) spring. Strain is adimensional and stress and elastic moduli

have dimension equivalent to pressure

Figure 2.3: Traction vectors Ti and decomposition into stress tensor σ for an infinites-
imally small cubic element

Figure 2.4: Deformation of a solid cubic element (grey), acquiring a new shape (white)
after the effect of the displacement field u. Strain is understood as the ratio of the new
extension relative to the original, so each component of a strain tensor is given in Eq.

2.1.



2.1. WHAT IS A SEISMIC EVENT? 13

ε =


∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)
1
2

(
∂u2
∂x1

+ ∂u1
∂x2

)
∂u2
∂x2

1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)
1
2

(
∂u3
∂x1

+ ∂u1
∂x3

)
1
2

(
∂u3
∂x2

+ ∂u2
∂x3

)
∂u3
∂x3

 . (2.1)

If this medium has no preferential direction (isotropy), a common mathematical trick

is to decompose c in two constants, the shear Young modulus µ and a complementary

Lamé constant λ , in the form ci jkl = λδi jδkl +µ(δikδ jl +δilδ jk). In this way, the stress-

strain relation is considerably simplified to σ = 2µε + λ tr(ε)I, where I is the identity

matrix. Common rock formations have µ parameter varying in the range 10− 140 GPa

and λ in the range 10−160 GPa, with small (less than 5 GPa) dependence on temperature

and external pressure (if above 250MPa) [27]. The potential energy accumulated in a rock

under stress is U = 1/2
∫

σi jεi jdV = 1/2
∫

ci jklεi jεkldV , and a seismic event consists in

releasing part of this stored energy, mainly in form of seismic waves.

The total body force on the cubic element is Fi = ∂ jσi jdV , but the mass of the cube

is m = ρdV , so Newton’s second law (F = ma) reads ∂ jσi j + fext = ρ üi. We can assume

that the external normalised force element fext is zero for the cases of interest (it only

becomes relevant in specific very low frequency modes, where gravity plays a role, and

when very close to epicentre, where a source force fs is present). Replacing σ by Hooke’s

law, after a few algebraic manipulations we reach (λ + 2µ)∇(∇ ·u)− µ∇× (∇×u) =

ρü (see [3–5] for more details). Although this equation is complicated, it simplifies by

expressing the displacement vector u in terms of scalar and vector potentials φ and ψ

(in analogy to electromagnetism): u = ∇φ +∇×ψ . Substituting and using the identity

∇2v = ∇(∇ ·v)−∇× (∇×v) it immediately obtains the seismic wave equation:

∇

(
(λ +2µ)∇2

φ(x, t)−ρ ¨φ(x, t)
)
=−∇×

(
µ∇

2
ψ(x, t)−ρ ¨ψ(x, t)

)
. (2.2)

A simple solution is to equal both sides to zero, leading to two wave equations:

∇2φ = (1/v2
p)φ̈ and ∇2ψ = (1/v2

s )ψ̈ , where vp = ((λ + 2µ)/ρ)1/2 and vs = (µ/ρ)1/2
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are the respective velocities in the medium. As expected, the plane wave solution is of

the form φ(x, t) = Aexp(i(ωt±k ·x)) for the first case, and analogous, but with A be-

ing a vector, for the second. For a wave propagating in z-direction, the first case leads

to a displacement contribution of u(z, t) = ∇φ(z, t) = (0,0,−ikAexp(i(ωt± kz)). This

is a compressive wave, like sound. Comparatively, the second case leads to a contribu-

tion u(z, t) = ∇×ψ(z, t) = (ikAy,−ikAx,0)exp(i(ωt± kz)), which is a transverse wave

solution, like the upwards and downwards motion of a string. The first solution is re-

ferred as a P-wave (primary, due to higher velocity, the longitudinal/compressive wave

solution), and the second a S-wave (for secondary or shear, the transverse wave solution).

The P-wave and each component of displacement of the S-wave have kinetic energy of

K = 1/2
∫

ρ(u̇i)
2dV = A2

i ω2k2ρ/4 and potential energy due to strain in the wave-front

of the same amount, values averaged over the wavelength. These constitute the primary

non-frictional components of energy release in a seismic event. The P and S waves are

depicted in Fig 2.5.

Figure 2.5: Simplified diagram of P (left) and S (right) wavefronts. Adapted from our
publication on [10].

It should be noted that the expressions, in particular the seismic velocities vp and vs,

depend on the density of the medium ρ . It implies that the seismic waves path are subject

to refraction (and reflection) wherever there is a boundary, similar to Snell’s problem in

ray optics. Furthermore, after meeting the boundary, the refracted/reflected wave may

have components of the other mode. As the Earth is not homogeneous, the seismic waves

sensed by a seismometer are not only the pure direct path P and S waves, but also all the

reflections and refractions reaching the device location.
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2.1.3 Trace, magnitude and intensity

When the seismic waves arrive at a location, the shaking is recorded by a device that

might capture the surface displacement, velocity or acceleration against time, producing

a time-series. This time-series is historically referred as seismic trace in Seismology, due

to the way it was recorded on paper in old devices. An example is presented on Fig. 2.6

for the 2011 Tohoku-oki thrust event, as observed on the IU-MAJO seismometer (located

in the underground Matsushiro Seismological Observatory, near Nagano, Japan), vertical

broadband component.

Figure 2.6: Seismic trace of the 2011 Tohoku-oki earthquake from the vertical broad-
band component (BHZ) of the IU-MAJO seismometer, Japan. The arrival of the P, S
and surface waves are indicated. This seismic event was so strong that the motion was

above the instrumental limit and the signal was clipped.

In this case, the first peak above the background is the direct P-wave, which we

expected from the higher speed. The amplitude increases in this case when we observe

the arrival of the S-wave. Around this stage there is already a mix with the refractions

and reflections of P and S waves on the Earth’s layers. In addition, when the P and/or S

waves meet the ground surface, they might satisfy a condition for the generation of a third

type, surface waves, which are even more damaging. As the name suggests, they travel

along the surface of the Earth, which partially explains why they produce higher ground

shaking – the energy is not spread to the planetary interior. Two types of surface waves

occur: Rayleigh waves, which is a non-trivial solution originating when a P and a S wave

meet at the Earth surface, and Love waves, which is another solution when two S waves

constructively interfere in a location where the bottom layer has lower density than the
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top, acting like a mirror. A thorough detailing of their mathematical description can be

seen in refs. [3, 4, 7].

By measuring the time-delay between the arrival of the P and the S wave, it can be

determined the epicentre, by simple triangulation of the result from each sensor in a net-

work. The frequency distribution of the P and S waves peaks around the range 0.1-2 Hz,

which is why most seismometers are tailored for such frequency. From the identification

of the modes from reflection and the refraction as they arrive at different stations, it is also

possible to infer the layered structure of inner Earth. Following global observations, Fig.

2.7 shows the travel-time speeds of the P and S seismic waves depending on the distance

to the centre of the Earth, and the inferred variation of the density profile, meaning radial

layering. The IASP91 Earth model [28] is based on extrapolation from 57655 travel-time

data of 104 events, whereas the Preliminary Earth Reference Model (PREM) [29] is result

from the analysis of 26000 events (2000000 detected P-waves and 250000 S-waves). The

principal layered structure of the Earth (crust, mantle, outer core, inner core) is defined

by the three large discontinuities, respectively at radius 6371 km (25 km depth), 3480 km

(2891 km depth) and 1222 km (5149 km depth).

Figure 2.7: Two models of seismic waves velocity profiles, and the inferred density
layering of the Earth. IASP91 model definition/data from [28, 30] and PREM model

definition/data from [29].
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It is convenient to have a simple quantity to assess the energy release of an earth-

quake. The faster procedure is to assess a magnitude using the Richter scale (ML) [31].

The origin of this scale is empiric, due to an observed logarithm relation of the amplitude

A of the first P-wave as detected on a specific type of seismograph and the distance D

of the device to the epicentre (Eq. 2.3). The amplitude A is given in mm of an Wood-

Anderson seismograph, which will be further presented in Sec. 2.3.1 (Fig. 2.16), and D

is given in km

ML = log10(A)+2.76log10(D)−2.48. (2.3)

Unfortunately the Wood-Anderson torsion seismometers are no longer a standard

(modern devices sometimes implement sophisticated scale conversions), and also the res-

ult might vary slightly depending on the location. Other magnitude-scale quantities in-

spired by empirical observations are also commonly used: body-wave magnitude (mb)

and surface-wave magnitude Ms (Eqs. 2.4 and 2.5)

mb = log10(A/T )+Q(h,D), (2.4)

Ms = log10(A)+1.66log10(D)−2. (2.5)

The body-wave is also calculated over the first P-wave, for amplitude A in microns,

period T < 3s, and only considering stations at less than 100◦ from epicentre. Q(h,D)

is an empirical function designed to produce a consistent output across all stations in a

network, depending also on the earthquake depth h. This standard was adopted by the

World Wide Standardized Seismograph Network to monitor if countries were following

the 1963 Nuclear Test Ban Treaty. The surface-wave magnitude Ms is measured by taking

the amplitude A as the amplitude in microns of the Rayleigh waves with 20s period spe-

cifically. However, these three formulations are purely empirical and bear little relation

with the physical mechanism producing the earthquake. Furthermore, the three values

diverge for strong earthquakes (M > 6).

The Moment Magnitude scale (Mw), given by Eq. 2.6, overcomes these issues, as it
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is based on the seismic moment M0 of the earthquake. The seismic moment is defined on

terms of the slip parameters of the fault (shear modulus µ at fault depth, mean dislocation

of the fault 〈∆U〉 and surface area S), but these relate to the stress drop on the fault and

consequently to the radiated energy E0 in form of seismic waves (see refs. [3, 4] for further

details). The seismic moment also connects with the stress drop ∆σ according to Eq.

2.8, where c is a proportionality constant depending on the shape of the fault. Hence, the

Moment Magnitude scale is a more robust measure, leading to a unique result for a seismic

event. However, to be able to determine the fault rupture parameters precisely, it takes

careful analysis from several stations. It means that a precise Moment Magnitude value is

typically available only days after an event has passed. For smaller events, might not be

calculated, once the different magnitude scales converge for the smaller earthquakes, and

Mw

Mw =
log10(M0)

1.5
−10.7, (2.6)

M0 = µ 〈∆U〉S = 2 ·104E0, (2.7)

∆σ = c
M0

S3/2 . (2.8)

The magnitude of an earthquake evidences the strength of the hazard earthquake.

There is another quantity, seismic intensity, which shifts the focus to how the seismic event

effectively impacted a community, therefore attempting to provide a comparative measure

for the disaster scale. It is expressed in the modified Mercalli scale, given on Table 2.1.

After a strong earthquake, national operators produce maps showing the intensity in each

district, or a contour map showing the regions of same intensity (isoseismal map). The

data used to produce these are a mix of inputs from seismometers with monitoring of

messages sent across social media about a seismic event. The intensity maps support

decision-making in rescue and recovery actions and may assist the zoning of areas with

higher risk of damage. There are locations, such as Mexico City in the 1985 and 2017

events, where the seismic intensities can be higher than surrounding neighbouring areas,

even those closer to epicentre. This is due to a peculiar geomorphology of the region,
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Table 2.1: Modified Mercalli seismic intensity scale

Intensity Definition
I Not felt (but detected by seismogram)
II Felt only in special circumstances (upper floor of buildings)
III Felt indoors, similar to the passage of vehicles
IV Light shaking, no damage
V Moderate shaking, very small damage (plaster, dishes)
VI Strong shaking, few damages (moving furniture)
VII Very strong shaking, medium damage (affect poorly designed structures)
VIII Severe shaking, medium-high damage (partial collapse of buildings)
IX Violent shaking, heavy damage (buildings shift off foundations, ground cracks)
X Extreme shaking, very heavy damage (structures destroyed with foundations)
XI Only few structures remain in place, large ground fissures
XII Total destruction of cities. Objects attached to ground thrown to air.

Based on [3].

consisting of a layering of soft clay with hard rock and stiff soil deposits, which amplifies

the effect of the tremors [32].

2.1.4 Earthquake occurrence: location and magnitude distribution

The occurrence of earthquakes empirically follows a frequency-magnitude rule, the

Gutenberg-Richter scaling law (Eq. 2.9) [33–35]. This relation can be observed by means

of a semi-log plot, where the logarithm cumulative number N of earthquakes with at least

magnitude M decreases linearly with the value of this magnitude. The linearity constants

a and b may be simply determined by regression. The value of a is an indicator of the

local seismicity rate and depends on the number of events in the dataset. The b-value,

on the other hand, is the coupling constant between earthquake frequency and magnitude,

which is about b = 1 in active seismic zones, oscillating only slightly along time. Figure

2.8 shows the distribution of earthquakes with the magnitude for the events around the

Japanese trench area for the year of 2017. The discrepancy observed at small magnitudes

is due to lack of data – instruments might not be able to detect the smallest events, unless

they are located close to the epicentre. For this, a starting value – Magnitude of Complete-

ness – is selected. The moment magnitude of an earthquake is connected to the rupture

area S of a fault (as seen in Eq. 2.8), so that the Gutenberg-Richter law can alternatively

be expressed as a power-law relation with the rupture area assuming constant stress drop
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Figure 2.8: Observation of Gutenberg-Richter law for the 299 recorded events on
the year of 2017 on the area around the Japanese trench ([latitude range,longitude
range]=[34.98–42.48, 138.75–147.02]). Note that b-value is close to 1. Plot construc-
ted by a modification of Gismo toolbox [37]. Data from IRIS consortium, downloaded

using Gismo for Matlab.

(Eq. 2.10) [3, 36]. For very high magnitudes (>7.0) it will also be observed a cut-off on

the Gutenberg-Richter law, due to the physical constraints of the rupture area of a geo-

logical fault. Table 2.2 details the global rate of occurrence of seismic events in relation

with the magnitude

N = 10a+bM, (2.9)

log10 N = c− (2/3) log10 M0, (2.10)

= c− log10 S. (2.11)

The epicentre of large earthquakes follows a global spatial distribution shown in Fig.

2.9 for Mw > 5.5 in the period 01 January 2008 to 31 December 2017. These large earth-

quakes are due to the presence of large rock discontinuities and possibility of movement

between the blocks. Such is the case of the subduction (vertical) or transform (horizontal)
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Table 2.2: Estimated global earthquake occurrence for each magnitude band.

Magnitude (Mw) Estimated number of events
4.0-5.0 10000 per year (∼30 per day)
5.0-6.0 1500 per year (∼4 per day)
6.0-7.0 150 per year
7.0-8.0 15 per year
>8.0 1 per year - 1 per decade

Note: Estimates based on average retrievals of the IRIS catalogue for the period
2008-2017, except for the latter band where it was considered the period 1968-2017.

Figure 2.9: Spatial distribution of Mw > 5.5 earthquakes around the globe, 2008-2017.
Data retrieved from IRIS catalogue.

boundaries at the edge of the tectonic plates that split Earth’s crust into large sections able

to move independently. The motion of each plate is maintained due to mantle convection,

differential gravity force in higher and lower density sections leading to a sliding effect,

tidal forces and global deformations. These plate boundaries constitute faults of several

kilometres, able to release higher energies when a sudden movement occurs after a period

of accumulation of stress.
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2.1.5 Foreshocks, aftershocks and swarms

Large earthquake events rarely occur alone. They typically occur together with smaller

events either preceding (foreshocks) or succeeding (aftershocks) the largest event (main-

shock). There is a third possibility, a swarm, when a sequence occur without clear dis-

tinction of a driving mainshock and the aftershocks. The identification of a sequence as a

swarm or regular, and the individual of single events foreshock, mainshock or aftershock,

can only be determined after the sequence has finished. For large events the sequence

usually takes 1-2 weeks, but it can extend for months. Figs. 2.10 and 2.11 illustrate the

cases.

Figure 2.10: Swarm earthquake sequence in Mexicali, US-Mexico border in California,
during February 2008

Figure 2.11: Tohoku-oki earthquake sequence, Japan, March 2011. Foreshock, main-
shock and aftershocks are displayed. Also a series of events are shown which can be

interpreted as either part of the aftershock or as a swarm sequence.
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Measuring the frequency of aftershocks n(t) in function of the time t elapsed from

the mainshock leads to the observation of a decay given by the (generalised) Omori’s law

in Eq. 2.12. The constants k and C are also empirically defined varying on the earthquake

sequence being studied. The rate of decay p is typically fixed for an area, but also em-

pirically defined. The first description of the law [38] fixed p= 1, but latter accounts for

other areas led to the generalised version [39], which allows p to vary, typically in the

range 0.7–1.5. Most aftershock sequences also observe Bath’s law, which is a statement

that the magnitude difference of the largest aftershock and mainshock in an area is about

1.2 [40, 41]. This has consequences in civil protection, as implies that the largest earth-

quakes would be followed by other significant events, with potential of disruption while

the response to the mainshock is still taking place

n(t) =
C

(k+ t)p
. (2.12)

Foreshock sequences can vary significantly in behaviour. It can be observed single

events of high intensity, or a cascade of small events (presumably triggering the motion of

the mainshock). There are also cases where no foreshock is observed. Whenever a fore-

shock is clear, the period of its occurrence is typically within a week of the mainshock.

The study of foreshocks is an open debate both in earthquake forecasting and prediction

paradigms. Ogata [42] proposes that the statistics that support the aftershock distribution

can also be applied for the foreshock, in particular to determine the likelihood of a fore-

shock sequence leading to the mainshock. This model, described as the Epidemic Type

Aftershock-Sequences (ETAS), is given by

Λ(t|Hist) =C0 + ∑
ti<t

Ci

(k+(t− ti))p eα(Mi−Mcutoff). (2.13)

In this expression, Λ is the seismicity rate function depending on the history of

events: for an interval (t, t+δ t), Λ(t|Hist) = limδ t→0
pδ t(t|Hist)

δ t , where p is the probability

of an event. The constant C0 is the background seismicity rate, α is the efficiency of an

earthquake generating another, and Mcutoff is the cutoff magnitude of the dataset. The
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log-likelihood of a set of events (t1,M1), . . . ,(tn,Mn) occurring is given by Eq. 2.14. This

can be interpreted as the chance of a set of seismic events occurring in future given the

history

logL((t1,M1), . . . ,(tn,Mn)) =−
n

∑
i=1

Λ(ti,Mi)−
∫ T

0

∫
δM

Λ((δ t),(δM))d(δ t)d(δM).

(2.14)

The ETAS model constitute the backbone of modern short-mid term earthquake forecast.

2.1.6 Gravity and displacement changes

Following an earthquake, there are permanent local gravity and surface displacement

changes occurring in two time-scales: co-seismic and post-seismic. Co-seismic effects

refer to the comparison of measurements previous to the mainshock with those immedi-

ately afterwards (up to a few weeks). Post-seismic effects refer to a similar comparison in

the scale of months following the principal seismic event. Hence, the co-seismic gravity

and displacement changes are directly associated to the earthquake movement, and are

used to assess the characteristics of seismic event, and the current and likely future fault-

ing behaviour in that specific area. They reveal the short-term land topography changes

(with possible geographic implications, including the definition of borders between prop-

erties or even nations) or the modifications in the underground structure (which affect how

future earthquakes will occur). The post-seismic changes, comparatively, are associated

to the resettling of the fault zone after the event, and are highly location dependent.

Theoretical co-seismic displacement and gravity change effects due to the dislocation

of a finite rectangular fault were respectively defined by Okada and Okubo in [43, 44].

The numerical solution of the application of these to the 2016 Mw6.2 Amatrice (Italy)

earthquake is presented on Fig. 2.12. Close to the epicentre the changes can be consider-

able, in this case reaching up to 1.5µm/s2 gravity variation (the order of tidal effects) and

about 1m maximum absolute displacement. However, the decay is fast as the distance to

the epicentre increases. If a sensing network is located at a distance of 10-50km from the

epicentre, the observed co-seismic displacements would be not significantly greater than
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10cm, and the surface gravity change would be in the order of 10nm/s2 for a similar event.

This is the scale of reported co-seismic changes [45–48].

Figure 2.12: Expected co-seismic displacement and gravity change due to the 2016
Mw6.2 Amatrice earthquake from Okada [43] and Okubo [44] solutions. Computed
using okada85 and okubo92 tools for Matlab [49, 50], and adopting the earthquake

source parameters for single fault approximation of this event presented on [51].

2.1.7 Exotic phenomena

Recently discovered or exotic phenomena being currently investigated in observational

seismology include:

• Prompt/transient gravity changes: small fluctuations in the surface gravity caused

by the P-wave. As P-wave are compressional, the mass is redistributed in their

passage, with a gravity field effect calculated to depend with the distance to the

wavefront as r−4 [52, 53]. Modelling and reported attempt observations are of the

order of 1nm/s2 transient gravity changes lasting for seconds to few minutes before

P-wave arrival [54, 55].
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• Intraplate seismicity: despite being rare, significant intraplate events can happen.

This is the case of the events affecting the Northeastern region of Brazil [56–58],

including the 1986 João Câmara earthquake sequence which damaged or destroyed

4000 homes. Not always a geological fault system can be attributed to intraplate

events. Hypothesis for these events include the reactivation of ancient, deep bur-

ied, geological faults [59, 60] which are difficult to observe. Alternatively, it has

recently been proposed that the long-term development of conditions for concen-

trated crustal deformation spots within a plate could would lead to these events

[61].

• ‘Silent’ earthquakes, or slow earthquakes: these are seismic events which the energy

is released in the time-scale of days, instead of seconds-minutes. Because they

are slow, the signal might be so weak as to not being able to discern P and S-

wave modes, with overall form resembling instead a long-period background noise.

These seismic events can have an equivalent high magnitude (Mw6−7) and yet no

sensible effects be perceived on the surface structures (hence ‘silent’). The most

active areas are alongside the Japanese East coast, the North-East USA – South-

East Canadian coast, and New Zealand. A review of these events can be found on

[62]. Only recently the conditions of stress and frictional properties allowing these

events could be reproduced in laboratory conditions [63].

• Episodic tremor and slip (ETS): this event consists of a constant slip between the

plates occurring for a defined time (ranging from months to years depending on

the location) which periodically stops giving rise typically to a slow earthquake,

and the slip starts again in sequence. They are observed in subduction zones, with

the epicentre positioned near the boundary of the crust with the mantle (Mohorovic

discontinuity). It has been proposed that the presence of a water deposit in the

interface of the plates could support this phenomenon [64, 65].
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2.2 Earthquake prediction

2.2.1 The field of earthquake prediction

Earthquake prediction consists of determining physical events that precedes earthquake

occurrence. Bullen and Bolt [5] argue that there are different kinds of prediction theor-

ies: descriptive, when a pattern is simply found from direct observation; inductive, when

current theory require additional hypothesis, these with predictive power; and deductive,

when current theory leads to consequences which have predictive power. Different than

what the name suggests, the practice of earthquake prediction is not on identifying new

single earthquake events that will occur, but to investigate past seismic records and de-

termine the other events associated to earthquake occurrence, so that a model could be

proposed which, in a future moment, might be applied for forecasting scenarios and de-

velopment of warning systems with greater time margins. Events associated to earthquake

occurrence could be direct or indirect causes, or precursors: anomalies occurring in other

physical events before the mainshock. Precursors might be a cause for earthquake occur-

rence, but also could be other events which share a common cause to the seismic activity

(mediated causality). As it works with past observations, the methods for analysis in

the earthquake prediction tends to be deterministic in essence, i.e., to unambiguously as-

sociate a set of physical events to the specific seismic phenomena. Derived models for

future events may have stochastic basis, hence linking to forecasting, but this is rather an

application.

2.2.2 IASPEI list of precursors

The International Association of Seismology and Physics of Earth Interior (IASPEI),

which is one of the institutions composing the International Union of Geodesy and Geo-

physics (IUGG), established in 1991 a set of requirements for candidates of earthquake

precursors [24, 66, 67]:

• There should be a explanatory model for the physical mechanism of the precursor-

mainshock relation, including predicted distance/magnitude variations.
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• The data of observed events must be available, including all the calibration and

treatments made.

• It should be presented the definition of the anomaly, enabling cross-validation with

other datasets.

• The reasons for associating an anomaly with a event must be clarified.

• It must be included a discussion of possible false alarms and the possibility of the

anomaly being co-seismic rather than pre-seismic.

The current precursor candidates on the latest IASPEI list [67] are:

1. Seismicty patterns

• Foreshocks (seismic events hours to weeks before the mainshock) [68]

• Pre-shocks (seismic events months to years before the mainshock) [69]

• Seismic quietness (quiescence) before large events [70]

2. Groundwater chemical properties

• Fluctuation in Radon gas levels dissolved in groundwater [71]

3. Crustal deformation

• Groundwater level increase [72]

In addition, there are nominations for which no final agreement has yet been reached

(all of which referring to crustal deformation):

• Strain changes [73]

• Tilt changes [74]

• Crustal displacement [75]
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Many of these events share common physical mechanisms. For example, the accu-

mulation of strain in a seismically active zone leads to observable strain changes at the

surface measured with a strainmeter. If a confined groundwater reservoir is present at the

location, it can act as a strainmeter, as it will be detailed in next section. These crustal

changes also link to variations in the tilt angle between a surface and the gravity direction,

either because the surface topography is slightly modified, or because the distribution of

mass below has steadily changed, leading to a small variation in the direction of the grav-

ity acceleration vector g.

Foreshocks and pre-shocks are two similar cases, referring to past earthquakes creat-

ing the conditions for triggering a earthquake by rearranging the fault in unstable condi-

tions. They differ essentially in the time-scale of the processes considered. Seismic quiet-

ness, on the other hand, is the opposite geomorphological case, when the fault becomes

locked to the point that smaller earthquakes are not allowed to occur, and all the stress is

stored for the mainshock. Crustal displacement changes complement these candidates, by

suggesting that these changes can be indirectly monitored by the surface displacement,

which is an indicator of the plate dynamics.

The radon fluctuation is a location specific precursor candidate. When some rocks

are submitted to stress they release trapped gases. This is more directly observed in the

cases of materials that suffer liquefaction or susceptible to microfracturing. Among the

typical gases released is Radon 222Rn, a radioactive element product of 226Ra decay on

the 238U series, that is continuously monitored in underground water wells in Europe fol-

lowing an EURATOM agreement on natural radioactivity hazard assessment [76]. For

example, granite is a type of material rich in 238U, able to release significant quantities

of trapped Radon under the appropriate stress conditions. Currently other gases are also

monitored in water wells and atmosphere as potential seismic precursors, particularly

Ozone [77], but, as a convention, the title ‘Radon emission’ also applies as a common

nomenclature for all the other gases. This precursor candidate is among the most contro-

versial, once it appeared present in emblematic cases such as 2009 Mw6.3 L’Aquila event,

but closer consideration of the event shed doubt on the Radon data obtained and attempted
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forecast made [78].

Current open research include:

• Changes in the ratio of speeds of P and S waves in small local earthquakes (Vp/Vs

ratio)

• Variations in the Gutenberg-Richter b-value

• Electromagnetic emissions at ELF-VLF bands

• Temperature variations

• Changes in Earth resistivity

• Variations in the amplitude of some tidal modes

• Changes in the local surface gravity

A complete review can be found on [21]. On the following section we will expand

on the variations of the b-value and gravity changes, as well as presenting a case for tidal

triggering of earthquakes.

The precursor candidates are connected according to the blue arrows of Fig. 2.13.

The orange arrows of the figure indicate significant co-seismic effect that should be con-

sidered.

Figure 2.13: Diagram showing the expected physical links between precursor can-
didates and the occurrence of a seismic event. τ refers to a time-delay between the
variables, and the colours clarify the pre-seismic links (blue arrows) and the co-seismic

(orange).



2.2. EARTHQUAKE PREDICTION 31

The label τ above the arrows is an indicative of the timing of the process: −τ means

a precursory behaviour, +τ a seismic effect, τ ∼ 0 a reference that the referred process

has small response time.

2.2.3 The case for b-value anomalies

Laboratory studies based on application of stress in rocks find that b-value varies for

higher stress, presenting particularly high anomalies before rupture [79, 80]. For higher

stress it is observed a larger fracturing, leading to an increase of the larger earthquakes

compared to the smaller, reducing the b-value. Main et al [80] describe two model predic-

tions: for a elastic failure (stress increasing linearly until the rupture point), it should be

observed immediately before the rupture a drop in b-value up to 0.5, while for an anelastic

failure (stress-strain is nonlinear as it approaches the failure point), it should be observed

a small increase in b-value (about 0.2) on a first moment, followed by a sudden drop to

b-value close to 0.5 before the rupture. This supports observations by Imoto [81] of un-

usually small b-values in the interval of weeks up to 10 months before large earthquake

events in Japan, while high b-values were sometimes observed in the period 16-24 months

before the mainshock.

2.2.4 The case for tidal triggering of earthquakes

The mechanism of earthquake triggering is based on the accumulation of strain/stress at

the fault zone, as classically presented by the elastic rebound theory (earthquake occur

when the deformation in the fault area surpasses the critical elastic point) . The tidal

effects, mainly due to the Moon and the Sun, generates a significant extra stress field

and a deformation in the Earth’s crust, so that it could provide the extra push in faults

near critical loading. Furthermore, in faults located in ocean zones, the drag from water

movement above the sea bottom can provide additional stress. In this line of reasoning,

it is expected that most earthquakes occur during spring tides (14-day period) – when the

largest tidal variations are observed, due to full moon or new moon (syzygy). However,

high correlation could be empirically observed only in special cases, particularly consist-

ing of shallow earthquake sources in locations where ocean tides are large, due to the



2.3. INSTRUMENTATION IN SEISMOLOGY 32

local topography [82, 83]. In other cases, there is low correlation between tidal events

and earthquakes [84–86]. As will be detailed in Chapter 6, we have obtained an initial

indication towards shared information between tidal amplitudes and seismicity, however

more data is required for a robust conclusion.

2.2.5 The case for pre-seismic gravity anomalies

As the stress accumulates in the fault zone and deformation occurs, the variation in the

mass distribution is expected to reflect in potentially observable gravity changes (up to

the scale of µm/s2 over a long period). Zhan et al [87] conducted a seven year study with

a network of 385 gravity stations (25 absolute FG-5 instruments, 360 relative LCR-G

instruments) across China, extending further three years in the region of Sichuan. The au-

thors consider that nine large earthquakes in the period 1998-2008 had pre-seismic gravity

anomalies up to 1.3µm/s2 peak-to-valley, observed both before the 2001 Mw7.8 Kunlun

earthquake of magnitude Mw7.8 and before the 2008 Mw7.9 Wenchuan earthquake. The

satellite mission Gravity Recovery and Climate Experiment (GRACE, 2002-2017), al-

lowed for observations of gravity anomalies across the globe (even in locations without

precise gravity stations), as long as the gravity change is sufficiently large. This has also

been employed for the observation of possible gravity changes before large events, such as

2010 Mw8.8 Chile, 2011 Mw9.0 Tohoku-Oki and 2012 Mw8.6 Indian Ocean earthquakes

[88]. In these cases anomalies are observed 2-5 weeks prior to the mainshock.

2.3 Instrumentation in seismology

2.3.1 Seismometer

Seismometer is the sensor designed to measure a component of the ground motion during

earthquakes. A seismic station typically includes a few seismometers (at least 3, one for

each ‘channel’ or cartesian direction) and an accurate clock for time-keeping (often a

portable Rubidium atomic clock), besides instruments for recording and communication

of the acquired data and possibly geolocation instruments. A simple vertical seismometer

is depicted in Fig. 2.14, while a horizontal seismometer is shown in Fig. 2.15. Fig.
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2.16 shows a third type, a torsion seismometer, more specifically the Wood-Anderson

seismometer used by Richter to define his local magnitude scale [31].

Figure 2.14: Schematic diagram of a simple vertical seismometer.

Figure 2.15: Schematic diagram of a garden-gate horizontal seismometer.

Figure 2.16: Schematic diagram of a Wood-Anderson torsion seismometer.



2.3. INSTRUMENTATION IN SEISMOLOGY 34

The appropriate selection of the damping not only provides stability to system, but

allows to tailor the desired optimal frequency response. The example systems shown are

generally designed for constant amplitude response for frequencies above 1Hz. This is

sufficient to retrieve the main behaviour such as the arrival of the P and S waves, the

amplitude of the P-wave (to infer the local (Richter) magnitude ML) and the amplitude of

the 20s-period surface wave (to infer the surface magnitude Ms). However, the lower part

of the spectrum is not observed. Modern designs, such as the broadband STS-1 and STS-2

seismometers or the borehole KS5400, based on measuring the acceleration relative to the

inertial reference, are able to maintain a constant response amplitude starting at 0.01Hz,

and a operating range starting at 1mHz. This allows for a more complete picture of the

seismic signal. A comprehensive review of seismometry instrumentation principles and

response spectra can be found on [3–5, 89].

Data from 1433 networks of seismometers is available from the consortium Inter-

national Research Institutions for Seismology (IRIS)1. This is a joint effort from gov-

ernmental, educational/research and private seismic network operators, which deposit the

acquisition from their seismic sensors on real-time or as a historic record. Some operators

allow public access and enable real-time acquisition/monitoring. The most relevant to this

work is the Global Seismograph Network (codes ‘IU’, ‘GT’, ‘CU’, ‘II’ and ‘IC’, operated

by IRIS together with the United States Geological Survey (USGS) and local operators)

for the large number of broadband seismic stations (150) almost uniformly spread across

the globe2.

As a operator detects a seismic event, it reports the observed parameter to one a

research partner aiming to discover the source parameters, producing a catalogue entry.

Catalogues are created by a number of institutions, such as the International Seismological

Centre (ISC), the USGS National Earthquake Information Center (NEIC), the Japanese

National Research Institute for Earth Science and Disaster Resilience (NIED) and others.

Many of these independent catalogues are also collaborators of IRIS, which is then able

1IRIS Data Management Center: https://ds.iris.edu/ds/nodes/dmc/, 428 of which are perman-
ent installations. List of federated networks: http://www.fdsn.org/networks/.

2We have prepared a hands-on activity available on [90] on how to obtain and work with seismic data.

https://ds.iris.edu/ds/nodes/dmc/
http://www.fdsn.org/networks/
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to produce a unified global database of earthquake occurrences.

2.3.2 Gravimeter

Gravimeters are devices designed to measure the local earth gravity acceleration. They

are classified in two groups: absolute gravimeters and relative gravimeters. The relat-

ive gravimeters measure small variations of the gravity value in time, while the absolute

gravimeters provide the reference to which the relative devices are calibrated.

Absolute gravimeters are based on the falling of a reference mass on the effect of

the gravity force. For example, the commercial absolute gravimeter FG-5 principle of

operation is a falling mirror of defined mass in the movable arm of a Mach-Zehnder

interferometer, in a vacuum chamber (Fig. 2.17) [91]. Associating the precise disloca-

tion measurements from the moving fringes of Mach-Zehnder optical interference with

a time-keeping provided by a Rubidium atomic clock, a curve of time versus dislocation

is obtained, from which the accelerating force due to local gravity is extracted. The ac-

curacy of this instrument (agreement between instruments) is of 20nm/s2 and precision

(least significant bit) of 10nm/s2 for a total time of 3.75 minutes. A modern alternative

is the use of falling cold atom clouds, which are split and recombined during the fall tra-

jectory, producing matter-wave interference pattern linked to the value of absolute local

gravity acceleration. This is a technology still under development, and further details of a

possible design are explored in Appendix B.

Figure 2.17: Schematic diagram of an absolute gravimeter with Mach-Zehnder optical
design.
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Relative gravimeters are based on investigating the change in the equilibrium point of

a reference mass. The simplest designs, based on a reference mass suspended by springs,

allows the vertical position of the mass to change with gravity, and the equivalent effect

in distension of the spring or of a lever system supporting the spring is measured. This

simpler system allows for great portability, but it has a intrinsic limitation on the frequency

range and of being sensible to drifts and noise effects due to the moving mechanical parts

which suffer thermal variations and wear with time. An alternative approach is given by

the superconducting gravimeters, which also measure relative gravity.

Superconducting gravimeters are the most precise gravity sensing devices, with time-

domain accuracy of 1nm/s2 and precision and long-term frequency-domain accuracy up to

1pm/s2. Analogously to the mass-spring counterpart, the principle of the superconducting

gravimeter is to investigate the equilibrium point of a reference mass, but this time by de-

termining the conditions to keep it in inertial position when the local gravity acceleration

change. The suspension springs in this case are replaced by an equivalent “perfect" spring

consisting of magnetic fields repelling a superconducting sphere due to the Meissner ef-

fect, able to maintain it levitating in a fixed position. If the gravity changes, capacitive

plates encircling the sphere senses the shift in position and a feedback is applied to re-

store the initial equilibrium point. From the different magnetic field needed to be applied

to maintain the sphere in the same position along time, it is obtained the fluctuations in

local gravity. Furthermore, the absence of moving mechanical parts reduces the major

factors of drift and noise of spring-mass gravimeters. A simplified design of a supercon-

ducting gravimeter is shown in Fig. 2.18. More details of these instruments can be found

on [92].

A global network of superconducting gravimeters, the Global Geodynamics Project

(GGP), was implemented in 1997, containing 25 stations and enabling public use of re-

cord data for research with non-commercial purposes. This was replaced in 2015 by the

International Geodynamics and Earth Tides Service (IGETS)3, currently with data from

35 superconducting gravity stations and 50 instruments (a station can have more than

3http://igets.u-strasbg.fr/

http://igets.u-strasbg.fr/
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Figure 2.18: Simple schematic diagram of a superconducting gravimeter.

one gravimeter). The IGETS system currently does not enable real-time data acquisition,

but 3 stations, Strasbourg (France), Djougou (Benin) and Membach (Belgium), enable it

independently, through their websites4 or from IRIS Data Management Center.

2.3.3 Other devices

Additional devices used to support the analysis of seismic phenomena include displace-

ment sensors, strainmeters and tiltmeters, which will be briefly described next. To our

knowledge there is no unified, cross-institutional, infrastructure for global networks of

these instruments, as opposed to IRIS for seismometers and IGETS for superconducting

gravimeters. This makes difficult the long-term or global analysis of displacement, strain

and tilt patterns, and studies are often restricted to cases. For this reason, here we briefly

present these devices and applications for completeness, but only the more complete cata-

logue from seismometer and gravimeter data has been used for the analysis in the sub-

sequent chapters. However, the method of analysis to be presented on the next chapters

can be equally applied for the data analysis from these instruments, once available.

4Strasbourg and Djougou: http://cdg.u-strasbg.fr/PortailEOST/Gravi/v1/.
Membach: http://www.seismologie.be/en/gravimetry/observations/real-time-g

http://cdg.u-strasbg.fr/PortailEOST/Gravi/v1/
http://www.seismologie.be/en/gravimetry/observations/real-time-g
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2.3.3.1 Displacement sensors

Currently the most usual displacement sensor is the Global Navigation Satellite System

(GNSS) receiver. This type of sensor can pick up the signal from multiple geopositioning

satellite systems such as GPS, GLONASS and Galileo, and determine displacements on

the order of 1cm precision/accuracy level. Comparatively, the largest tidal component on

the solid Earth surface (semidiurnal tide, mode M2) has a vertical amplitude of approx-

imately 38cm and horizontal amplitude of 5cm, so they have to be filtered for precision

measurements. Constant movements from the plate tectonics produce displacements of

the order of about 0.05−10cm/year. Large seismic events such as 2009 Mw6.3 L’Aquila

seismic event produced co-seismic displacements up to 10cm in the horizontal and 30cm

in the vertical and post-seismic displacements up to 1cm in the horizontal and 5cm in

the vertical [93]. Notice that a GNSS receiver can only provide information about the

displacement at a single point, and not always a dense array of instruments is available.

A complementary alternative is to use satellite imaging or airborne radar imaging directly

to determine the topography changes before and after an event. For higher precision, this

is made through techniques such as Interferometric Synthetic Aperture Radar (InSAR,

using microwave) or Light Detection and Ranging (LiDAR, using laser), e.g. Fig. 2.19.

These produce topographic maps with about 1cm level accuracy on any area of the planet.

Figure 2.19: Simple diagram of the acquisition of InSAR image. Microwave frequen-
cies are preferred for active remote sensing techniques due to a atmospheric absorption
window. The LiDAR is analogous, using as source a 1064nm (infra-red) laser for sur-
face and 532nm (green) laser for sea mapping instead. The point phase difference is

calculated over a large area of interest, producing an interferometric map.
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2.3.3.2 Strainmeters

Strainmeters are devices designed to measure the differential strain in a rock section as

a function of time. From the stress-strain relation (σ = 2µε +λ tr(ε)I), the stress accu-

mulated at the fault can be inferred. A uniaxial strainmeter can be as simple as a spring

attached to the ground, or a rod inside a tube (like a piston) with a mechanism to determ-

ine its position (e.g. by measuring varying capacitance defined the piston walls). Precise

optical alternatives are also possible such as the long-baseline strainmeter shown in Fig.

2.20.

Figure 2.20: Schematic diagram of a long-baseline strainmeter with Michelson inter-
ferometer design.

Volumetric strain can be measured by borehole strainmeters or by measuring the

level of confined water-well systems. In the case of confined water-wells, as strain ac-

cumulates in the system, the pressure in the reservoir increases and the water levels rise

proportionally (Fig. 2.21). To identify if a water-well is confined or not it is necessary

to observe a long time-series record, separate effects from rainfall/drought and possible

consumption, assess if the tides are present and the amplitudes of each tidal frequency,

confirm that the observe effect is not atmospheric pressure response, and then determine

the aquifer type (fully confined, semi-confined, semi-unconfined, unconfined). Only fully

confined aquifers can confidently respond as volume strainmeters.

A review of strainmeter theory and design is presented on [94]. The application of

water wells as a volumetric strainmeter is detailed on [95].
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Figure 2.21: Schematic diagram of a water well from a confined aquifer serving as a
volume strainmeter.

2.3.3.3 Tiltmeters

Tiltmeters are devices that measure the inclination of the surface they are attached to in

comparison to the direction of the gravity acceleration vector. Examples of basic tilt-

meters are a bubble/spirit level or a long simple pendulum. High-precision devices are

improvements on the readout and stability of these mechanical systems, but are based

on the same operating principles. Tilt variations may occur due to displacements in the

attached surface or due to small changes in the direction of g. The first, associated with

strain data, is able to inform rotational movements in the fault system, while the latter

reveals variations in the local mass distribution, complementing the information provided

by gravimeters. An example of a simple tiltmeter in operation is given on Fig. 2.22. The

review on [94] provides examples of commercial designs and expected response.

Figure 2.22: Diagram showing the variation of the level of a borehole pendulum tilt-
meter due to mass redistribution in a fault system.



Chapter 3

Time-series considered

3.1 Geophysical time-series

We will here consider two types of geophysical time-series: seismic, which might be the

trace or the event catalogue, and gravity, obtained from IGETS network of superconduct-

ing gravimeters.

3.1.1 Seismic data

As detailed in Chapter 2, when an earthquake occurs the seismic waves might be sensed

by seismometers, which will record a trace, such as on Fig. 3.1. A local magnitude of the

earthquake can be directly determined, as well as an estimative of the epicentral distance

of the station. The epicentral distance is simply estimated by D = δ t(vpvs)/(vp− vs)

for δ t the time-difference of arrival of S and P waves, and vs and vp their respective

average velocities. By knowing the epicentral distance of a few stations, one determines

the location of the epicentre. For the magnitude, one take a closer observation at the

P-wave and obtain its maximum amplitude A in mm of an equivalent response from a

Wood-Anderson seismometer. The local magnitude, then, is estimated by ML = log10 A+

2.76log10 D−2.48, as seen on Sec. 2.1.3 (Eq. 2.3).

If the event is identified by a sparse network of seismometers (betweens tens and

thousand devices), it is possible to precisely determine the earthquake epicentre and depth,

the area of rupture, the released energy, and, finally, the moment magnitude. For small

events (M � 5.5) the Richter, surface and moment magnitude scales converge, so the
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Figure 3.1: Trace from the 11 March 2011 Tohoku-Oki earthquake, as observed by the
YSS station on Eastern Russia, close to Northern Japan. The three broadband channels
are displayed (vertical: BHZ, horizontal North: BHN, horizontal East: BHE), as well
as the start time of the P, S and surface waves, and the difference time δ t which enables
to infer the epicentral distance. Each channel expresses the signal from a seismometer
– either the vertical or horizontal type discussed on the previous chapter – all of which

located at the same place.

magnitude information is available immediately. However, for larger events it may be

necessary a higher computational effort of inversion of seismic source parameters, not

least because of the complexity of the event, which can involve a large number of fractures

occurring simultaneously. Hence, it is not unusual that the initial moment magnitude

estimate is updated in the first months following an events, only becoming available on

international catalogues after an agreement has been reached.

By selecting a region of interest, and organizing the entries of a catalogue in chrono-

logical order, we can build a time-series of earthquake occurrences for this area. For this,

we define a starting and an end time and a sampling rate ts. If no event is recorded at a

specific time, we assign a null marker, which could be the zero or a not-a-number (NaN)

value. When an event does happen within the time-window [t, t + ts) we assign one of

the earthquake parameters of interest. In our case, we consider the maximum magnitude

(largest earthquake), the cumulative magnitude (sum of magnitudes above a threshold, so

to consider the alternative that a large energy release was spread in many smaller events),

and the number of earthquakes within the time-window.
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Seismic datasets exhibit clustering of earthquake occurrences in time, i.e., there are

short time intervals with many events and long periods of relative seismic quietness. The

mainshocks are the peaks of highest magnitude in each cluster, such as discussed in Sec.

2.1.5. It is expected for the largest events to be chronologically followed by a number of

smaller events, in accordance to the aftershock distribution from Omori’s law (Eq. 2.12).

However, it is also possible that events happen before a mainshock, possibly explain-

ing its occurrence (foreshock). In the case of a single or few single events leading to

the mainshock, it follows the foreshock hypothesis, whereas, in the case of a Omori-like

distribution of many small events, it verifies the consistency of the Epidemic-Type After-

shock Sequence (ETAS) model. Another possibility is that before a mainshock there are

fewer entries than the normal, the seismic quiescence hypothesis.

Figure 3.2 exemplifies the case with data from the Central Mexico earthquake of

2017. After the mainshock we can observe some features. There is a window with rel-

atively few events, as intuitively expected given that a large fraction of the accumulated

stress on the fault was released in the mainshock, but then a few days later there is a new

cluster of events, apparently triggered by smaller events.

Figure 3.2: Sequence of seismic events around the 2017 Mw7.1 Central Mexico earth-
quake. Dataset obtained from IRIS catalogue contains 132 events from 09 to 30
September 2017 on a circular region of 5◦ radius centred at 18.584◦ N, −98.399◦ W.
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This clustering behaviour is consistent with Omori’s law and derived ETAS model,

as the occurrence of a smaller event enhances the probability of occurrence of a novel

one. Bath’s law is also observed, as the largest aftershock, occurred on 23 September, is

Mw = 6.1, meaning that the magnitude difference with the mainshock is precisely δMw =

1. There are hints at possible phenomena occurring before the mainshock as well. For

example, the Mw = 5.6 seismic event on 18 September, the day before the mainshock,

might be a foreshock candidate. However it raises questions on why the Mw = 5.7 event

on 10 September did not lead to the same effect. Also we can observe fewer events in

the period 13-17 September compared to the base rate on the period preceding the 13

of September, but the difference is not sufficiently clear to confirm seismic quiescence.

It could, however, satisfy a precursory ETAS model, by considering the same type of

clustering behaviour observed in the aftershock as also occurring in the foreshock region.

A time-series of Gutenberg-Richter’s b-value can be built by creating a time-window

[t, t + td), with td in the order of days/weeks (sufficient for an average greater than 30

events within the window), and monitoring the time-series of seismic event magnitudes.

For each point, the total number of events N within the window is recorded along with the

magnitude M of each. Then the slope of log(N(Mw > M)) as a function of M is assigned

as the b-value for the time t + td/2 (the centre of the window). By moving the time-

window by ts, the calculation can be redone and a b-value is assigned for t + td/2+ ts,

and so on (Fig. 3.3). Therefore, a time-series of the Gutenberg-Richter’s b-values is

generated, enabling the verification of anomalies in this variable and whether they are

related to mainshock occurrence. In our case, we have adapted the open-source Matlab

toolbox GISMO [37], which facilitates the computation of a single b-value for a whole set,

to: recursively request seismic occurrence data from IRIS catalogue within td =14-day

intervals, calculate the b-value for the intervals, store the result together with a timestamp,

and shift the time by ts =1 day, restarting the process until t = tend . The sliding window

width of 14-days was chosen as it was the highest resolution allowing for a±0.1 error bar

in the b-value calculation for the area of interest.
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Figure 3.3: Diagram of the process for generating a point of the time-series of the
Gutenberg-Richter’s b-value. By moving the sliding window to the yellow square in-

terval the next point of b-value is generated.

3.1.2 Gravity data

The surface gravity data is obtained from the International Geodynamics and Earth Tide

Service (IGETS) database1. The data we have used are time-series with a 1-min sampling

and manually corrected by the operators to account for unintended changes, such as those

caused by equipment maintenance (CORMIN data option). IGETS makes the data avail-

able in monthly text files starting with the calibration parameters and instrument location

in the header and proceeding with the minute-sampled timestamp, gravity value and local

atmospheric pressure in the body. As gaps are common, the original formatting divides

the data into blocks, starting with the mark 77777777 and terminating with the mark

88888888. The end of the file is defined by a mark 99999999. In order to work with a

longer time-series, not only the files need to be imported and joined together to obtain a

longer time-series, but the gaps have to be correctly identified and filled with a null mark,

1Freely available for research use at https://isdc.gfz-potsdam.de/igets-data-base/

https://isdc.gfz-potsdam.de/igets-data-base/
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so to later perform calculations only on one single time-series block containing the full

desired timespan.

On any point on Earth it can be observed an amplitude variation of surface gravity

on the the order of ±1000nm s−2. Most of the amplitude is due to the tides on Earth,

particularly the solid Earth tides. Although the ocean tides typically reach meters height

compared to centimetres height in the ground surface case, the solid Earth tides account

for greater mass displacement, leading to higher gravity variations. These tides occur at

a composition of frequencies clustered in four groups: long-period, diurnal, semidiurnal

and terdiurnal.

Fig. 3.4 (a) reveals a gravity signal collected from a superconducting gravimeter

in South Africa on August 2010. Analysing the frequency spectrum of this series, we

observe the main tidal modes described previously (Fig. 3.4 (b)). It is necessary to filter

out these tides if we intend to observe other variations, such as co-seismic gravity changes,

which are in the order of 1-100 nm s−2, considering a distance of 30-100km of the nearest

station to the epicentre. We also expect any pre-seismic gravity changes to be in the order

of nm s−2 for a station distant from source, and possibly µm s−2 for stations near the

epicentre. When comparing the gravity time-series with the time-series of seismic events,

we sample the time-series of seismic events in minutes.

Figure 3.4: Example of gravity signal from the SU3 instrument, in South Africa. Left
panel (a): 1 month sample (August 2010) of the relative gravity measurements. Right
panel (b): Power spectrum density of the entire time-series. Long-period, diurnal, semi-

diurnal, and terdiurnal tides are shown. Published by the author on [13].
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3.2 Data pre-processing

3.2.1 Tidal analysis and removal

The Earth deforms as the Moon and the Sun exert slightly different magnitudes of grav-

itational attraction to different parts of the planet. The total acceleration felt on a point

of Earth is also added by consideration on the Earth rotational movement (centrifugal

force), the ellipsoidal orbit of the Moon, the planet ellipsoidal orbit around the Sun, and

even the precession of the equinoxes (generating an apparent wobble on the polar caps),

and this leading to variations in the measured gravitational acceleration on a Earth sur-

face point at different time-scales. This is reflected in Fig. 3.4, where not only can be

seen the semi-diurnal and diurnal gravity variations from the Moon and Sun pull at the

time interval related to Earth’s rotation, but also an envelope of around 14 days period

due to the lunar orbit. The maximal amplitudes coincide with the perigee and the min-

imal with the apogee of the lunar trajectory. When analysing the time-series from the

gravimeters or from strainmeters or tiltmeters, signals will also be dominated by tides.

These are predicted by calculations based on the astronomical positions (ephemerides,

provided by NASA-JPL2 among others), defining tables of tidal frequencies, amplitude

and phases, such as Cartwright and Eden [96], with 505 frequencies, Tamura [97], with

1200, Hartmann and Wenzel [98], with 12935 frequencies (including effect of attraction

from other planets until Saturn), and others. Although these tables provide a guidance on

the expected tidal frequencies, the observed tides depend on a number of regional con-

siderations, from the geomorphology of the area to weather and climate factors. As the

highest tides might be potential earthquake triggers, location-specific solutions for pre-

dictions of a next high tide are of interest also to seismology. On the other hand, if the

intention is to investigate small gravity precursors, such as pre-seismic gravity changes,

the tides have to be removed from the original signal, as these gravity changes are ex-

pected to have amplitudes up to three orders of magnitude smaller than the gravity tides.

Three different methods are typically adopted for the purpose of filtering the measured

signal, eliminating the tidal contribution and obtaining a residual reflecting the response

2https://ssd.jpl.nasa.gov/?planet_eph_export

https://ssd.jpl.nasa.gov/?planet_eph_export
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of the Earth to other geological phenomena:

1. Deleting or damping the tidal frequencies

2. Modelling each physical contribution leading to the gravity signal

3. Fitting the data itself to a tidal model and subtracting the observation from the

model

The deletion or dampening is typically done by FFT (Fast Fourier Transform) filter-

ing or FIR (Finite Impulse Response) filtering, respectively. FFT filtering consists in: (1)

applying the Fast Fourier Transform (method of fast calculation of Eq. 3.1) to the time-

series, which converts it to the equivalent (frequency) series X(n); (2) setting to zero the

frequencies near the ones from the tidal tables; and (3) recovering the filtered time-series

by applying the Inverse Fast Fourier Transform

Xn =
N−1

∑
k=0

xke−i(2πkn/N) , n=0,1,. . . ,N-1. (3.1)

Any gaps must be interpolated or filled from theoretical estimates or the FFT cannot

be computed. For small gaps (minutes-hours), linear interpolation is applied. Otherwise,

the theoretical tides are calculated from the astronomical predictions and fitted to the

time-series. After tidal removal, the interpolated sections are removed from residuals

too, eliminating the artificial data. FIR filtering consists of a similar principle, based

on deleting the undesired frequency bands, but instead do so by the development of a

multiband notch filter, which, once implemented, is applied to the signal. This filter design

is performed by Matlab in-built routine fir2, where the inputs are the desired frequency

bands for dampening (regions centred at tidal table frequencies) and the filter order. A

filter order too low leads to dampening being insufficient to remove the tides, and order

too high creates distortions, especially at higher frequencies3. In practice, the choice of

the appropriate order for a particular station is a recursive process of building a filter and

analysing the output spectra.

3Equivalent to the misfitting that occurs when a polynomial of higher order than the true value is used
to fit a curve
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Another approach is to model each physical contribution to the gravity time-series,

from theory, based on astronomical positions and observation of Earth-bound processes

(global and regional weather, ocean changes, level of moisture in the soil, relative move-

ment of polar ice caps). On Fig. 3.5 we show the modelling of each component until

reducing the signal to a residual with tidal amplitude about 15 times smaller than the ori-

ginal series, for a 1-month gravity data sample in New Mexico. For the simulation of

the solid Earth tide and ocean tidal loading it was adopted the software Atlantida3.1 [99]

assuming theoretical tidal components from the Tamura (1200-frequencies) tables [97],

layered Earth model IASP91 [28, 30], and ocean model FES2012 [100]. The gravity

potential for the solid Earth solution consists in computing

VSolid Earth(r, t) = gequator Re

[
∞

∑
n=2

n

∑
m=1

c∗nm(t)Ylm(θ1,θ2)

]
, (3.2)

where cnm∗ is the set of complex amplitudes tabled and Ylm(θ1,θ2) the spherical harmon-

ics evaluated at the co-latitude θ1 and longitude θ2 of the station.

For the ocean loading the response of the ocean model to the tides is obtained and

the gravity attraction to the ocean is defined by the potential

Vloading(r, t) = ρ

∫∫
loading surface

G(r− r′)H(r′)dS, (3.3)

where G(x) is the Green’s function and H(r′) is the distribution of the loading element

(e.g. ocean).

The gravity acceleration is given by the gradient of these potentials. For the at-

mospheric, non-tidal ocean and hydrology loading, it was used the numerical gravity

solutions provided by EOST/University of Strasbourg4 for the IGETS stations. These

solutions are computed essentially from the same procedure as described by Eq. 3.3, but

the loading elements are the atmosphere (local (radius< 10◦) and regional (10◦ <radius<

30◦)), the ocean non-homogeneities (such as currents) and the contribution from the soil

moisture level. We have selected the results using the atmospheric observations from

4http://loading.u-strasbourg.fr/

http://loading.u-strasbourg.fr/
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ERA-ITERIM program5 sampled at 6h and ocean bottom pressure from ECCO2 model6,

interpolating the results as necessary.

Finally, we have calculated the contribution from the polar wobble from δgpolar =

−39 ·106(sin2θ1(m1 cosθ2 +m2 cosθ2), using EOPC04 data7 for geolocation coordinate

parameters m1 and m2 of the polar cap. The residuals of this sample are not sufficiently

reduced to observe seismic precursors, but other effects in the same scale could potentially

be verified, such as co-seismic gravity changes close to epicentre.

Figure 3.5: Example of physical modelling applied to 1-month data sample (October
2015) of AP instrument (New Mexico). The gravity residuals (h) are obtained by sub-
tracting the measured relative gravity (a) by all the following simulated contributions:
solid Earth tide (b), ocean tidal loading (c), atmospheric loading (d), non-tidal ocean
loading (e), hydrology loading (f), and polar tide (g). In this sample, there was a mis-
fitting of the amplitudes of the theoretical semidiurnal tides with the observations, so
oscillations are still present in the gravity residuals (h), albeit with smaller amplitude

than in the original time-series (a). Published by the author on [13].

5http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
6http://ecco2.jpl.nasa.gov/
7ftp://hpiers.obspr.fr/iers/eop/eopc04

http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
http://ecco2.jpl.nasa.gov/
ftp://hpiers.obspr.fr/iers/eop/eopc04


3.2. DATA PRE-PROCESSING 51

Finally, the last tidal removal option is the data-based modelling, which is the pre-

ferred method in the geodesy and gravimetry community. It consists in adjusting a tidal

model creating a solution specific to the station location, by analysis of the past record

of observations. Due to the tides being highly periodic, the most efficient model re-

mains a classical harmonics solution, meaning the expansion of the tidal signal in well-

defined frequencies in expressions of general form V (t j) = A0+∑
n
i=1[A1,i cos

(
bit j +φi

)
+

A2,i sin
(
bit j +φi

)
]. There are different practical software implementations specialised for

gravity tides, such as the open source programs ETERNA [101], VAV [102], BAYTAP

[103] and UTide [104]. Each implementation re-writes the classical harmonics expression

in a different form either to better visualize each tidal group (diurnal, semi-diurnal,long-

period), or to perform the calculation in a more efficient way, but the task is common:

find the set of parameters that adjusts the theoretical tidal table (such as from Tamura) to

the observed dataset. UTide for Matlab is adopted in this study, due to its simplicity of

use and equally efficient performance compared to the other options. After adjusting the

ideal tidal parameters for the location of the station, we reconstruct, from the model, the

tidal contribution from the same period of the dataset. The difference of the reconstructed

time-series and the observation is the gravity residuals. In principle, the gravity residuals

should present the non-tidal gravity events, i.e., non-periodic signals such as pre-seismic

gravity changes should be observable.

However, it is not a priori clear which method performs best. All methods will still

present some degree of tidal oscillations. The data-based method from ordinary least

squares generates gravity residuals with amplitudes of about half the amplitudes from

the physical modelling method. On the other hand, from the data-based method has the

drawback of losing the connection with the physical process guiding each component,

making hard to have control over which variables to preserve or discard and how to de-

termine if the signal is under or overfitted. The frequency filtering methods may provide

the smallest amplitude, but they completely remove information contained the selected

frequencies, meaning that if a non-tidal event has a contribution in this region, this is lost

from the residuals. We discuss this in greater detail in [13].
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Figure 3.6: Simplified diagram of the false nearest neighbours method. The identific-
ation of the false neighbours is done for all points and the fraction of false neighbours
relative to true neighbours is used to determine the true dimensionality M of the system.

The attractor from each time-series can be reconstructed using the Takens’ method

of delays [105], consisting in creating a state-space plot where one axis is the time-series

values and each other axis is the same time-series points delayed by kτ , k=1,2,. . . ,M, with

M the system embedding dimension. The delay τ adopted for the reconstruction was the

first minima of the auto-mutual information, which is 3.6h for the gravity signals. Also,

the embedding dimension, which is the minimum number of axis reconstructing the whole

dynamics, is 4 for this systems. This is obtained from the false nearest neighbours method

[106]. It consists in verifying for a given time the distance to the nearest neighbour of a

point. If in the next iterate this distance is too high, the neighbour is false. Too large

fraction of false neighbours means the state-space constructed for the M of the hypothesis

is actually of lower dimension with respect to the the true system – a projection. As long

as the system is an attractor with relatively low noise, increasing M would eventually lead

to a fraction of false nearest neighbours near zero, which is the true embedding dimension.

Figure 3.6 presents a diagram clarifying the method.

The values obtained for τ and M are compatible with previous results from ocean

tidal heights [107]. Although M=4 can be regarded a low-dimensional system, We still

cannot observe the state-space directly. As an alternative, we define an hyperplane given

by average point of the fourth component of the attractor, and observed the intersection

the attractor of each gravity time-series (original and residuals) with this surface (Fig.

3.7). We also include for comparison a model from 1200 frequencies corresponding to the

tides and a corrrelated ( f−2) noise profile, regarded as a common background behaviour

in geophysical signals.
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Figure 3.7: Map of the intersection of the trajectory with the surface x4 =< x4 >
for the original gravity signal of AP station (a), gravity residuals obtained from the
different methods (b)–(e), artificial signal generated by 1200 sinusoids corresponding
to the tidal frequencies (f), and artificial red-noise (g). Similar patterns are observed for
the other stations. The selected section is the one with fourth dimension equal to the
mean fourth coordinate of the reconstructed attractor. Black dots are the intersections
of the attractor trajectory with the surface in the direction of increasing x4, and gray
crosses are intersections in the direction of decreasing x4. Units: nm s−2. Published by

the author on [13].
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Qualitatively, it can be observed that the data-based residual is similar to the correl-

ated noise. The physical modelling residual seems to retain the characteristic helicoidal

shape of the original signal, but also has a spatial separation of the two directions of inter-

section of the hyperplane similar to the combination of periodic signals, further confirm-

ing tides are still present and relevant to this signal. The FFT and FIR residual completely

modified the attractor setup, transforming it to a pattern similar from observed on Levy

flights and the torus solution.

Observing more carefully the direction which the points cross the hyperplane defined

by the average value in the fourth dimension (i.e. the plane x4 = 〈g(t +3τ)〉), by assigning

a black dots in direction of increasing x4 and grey crosses in direction of decreasing x4,

different patterns can be observed in each case. The original attractor (Fig. 3.7 (a))

exhibits a process where the trajectories from the upper part of the helicoidal structure are

mapped on the lower band. These do not happen in the frequency filtered (either by FFT

or FIR) signals in Fig. 3.7 (b) and (c). The residuals from physical modelling, though,

preserves this structure. The residuals from data-based modelling, although exhibiting a

tendency towards maintaining this division, is less evident than in the physical modelling

case.

Finally, we have calculated the largest Lyapunov exponent for each gravity residual

and observation, comparing also across different time-series from other IGETS stations.

The largest Lyapunov exponent is the exponential rate of separation of initial neighbour-

ing trajectories in the embedded space, and as a general rule, it is positive for cases sens-

itive to initial conditions (suggesting chaos), negative for periodic stable orbits and zero

for limit-cycle conditions. For this analysis we have build a Matlab routine based on

Rosenstein algorithm for calculation of the largest Lyapunov exponent [108]. We had to

reselect the embedding time delay to 30 minutes, as 3.6h was empirically observed to

be too large to observe a exponential behaviour, but the method is robust to variations in

τ . For improved statistics we have averaged the results over 2000 initial points, with the

largest Lyapunov exponents on gravity observations and gravity residuals shown on Table

3.1.
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Table 3.1: Largest Lyapunov exponent [bits h−1] of original gravity time-series and residuals
after filtering for all stations.

Station Original series FFT res. FIR res. Phys. Model. res. Data-based res.

AP 1.412±0.007 0.349±0.007 0.77±0.03 0.93±0.02 0.63±0.02

BF 1.208±0.005 0.29±0.01 0.53±0.03 0.84±0.01 0.26±0.01

MA 1.317±0.006 0.80±0.03 0.76±0.02 0.73±0.01 0.42±0.02

NY 0.860±0.009 0.35±0.04 0.41±0.03 0.81±0.02 0.61±0.02

SU 1.326±0.007 0.68±0.04 0.58±0.03 0.90±0.02 0.84±0.02

Note: Published by the authors on [13].

Again, this is in accordance to previous observation in shallow water ocean levels

of 0.57-4.54 bits h−1. The values suggest that the Earth responds to the tides by inherit-

ing a small sensitivity to the initial conditions, thus enhancing the oscillations promoted

by tides instead of damping them. The sensitivity to the initial conditions behaviour is

maintained in the residuals, but there is a reduction of the value. As the Lyapunov ex-

ponent relates to the entropy of the signal, this reduction indicates that the residuals are

less entropic than the original signal, as expected. Physical modelling residuals presen-

ted Lyapunov exponents closer to the original time-series, while other methods presented

larger reductions but also greater differences between the stations.

3.2.2 Symbolic encoding and partitioning

The information-theoretical procedures we are going to apply involve the estimation of

probabilities of measurements in a given variable. For sufficiently long time-series these

probabilities can be obtained by the procedure of box-binning, which consists of splitting

the domain of the variable into smaller ranges and counting the number of elements that

fall in each range. For example, for a variable X ∈ χ = [xmin,xmax], we can split the

domain in nb bins or subdomains (χ = χ1 ∪ χ2 ∪ . . .∪ χn, where χi ∩ χ j = 0 ∀i, j) and

count the number of points in each (Ni). By dividing this count by the total number of

points on the time-series, we obtain the probability of a point x being in the subdomain

i, i.e. px(i) = Ni/∑Ni. The resolution in the probability distribution obtained increases

in accordance to the number of bins selected. However, it must be safeguarded that the

average number of points in the bins remain sufficiently high, otherwise the frequentist
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Figure 3.8: Example of calculation of joint probabilities via the binning method for a
time-series of 10000 points.

definition of probability is invalid. For the case of joint probabilities p(x ∈ i,y ∈ j), the

procedure is analogous, but calculated over a grid where each axis is one of the variables

(Fig. 3.8). With this, it is already possible to calculate informational quantities, such the

Entropy of variable and the Mutual Information of two variables, which will be discussed

in subsection 4.1. In this theses we will, however, analyse these quantities over symbolic

sequences, which also reveal the dynamical processes of each point.

We monitor the dynamics of the points of the variable as they move from one bin to

another with time by assigning to each data point a marker Sx(i) indicating the subdomain

it belongs to. For convenience, if the number of bins (marginal partitions) nb is 2, S is

binary (0,1), if nb = 3, S is ternary (0,1,2) and so on. In this thesis we will only work

with binary partitions for simplicity, but our code allows for other partitioning. Increasing

the number of bins increases the resolution of the analysis, however the computational

requirements also increase. We observe, then, for each point in the time-series, what is

the initial marker and what is the symbol at the next iterate, and so on. A new symbol

can be created to monitor the evolution of each point, which could be given by φx(t =

t ′) = ‘S(t = t0)S(t = t0 + 1) . . .S(t = t0 +L)’ = ‘00 . . .0’, ‘00 . . .1’, ...,or ‘11 . . .1’. For

convenience, we transform the symbolic sequence into a natural number by

φx(t = t ′) =
t0+L

∑
i=t0

Sx(t = i)nt ′−(i+1)
b . (3.4)

This new symbol for monitoring the trajectory effectively means the creation of a
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new partitioned space for the variable. This is exemplified in Fig. 3.9, showing the

construction of partitions with different orders. Observe that the order of a partition is

equivalent to the length of the symbolic sequences being used, i.e., the number of points

in the original space necessary to create one point in the partitioned space. The calcula-

tion of the information theoretical quantities described on chapter 4 are performed in the

partitioned space.

Figure 3.9: Example showing the symbolic encoding and the construction of the parti-
tioned space up to the third order, for nb = 2.

3.3 Test-bench dynamical system: Logistic map
A map is a discreet time system which evolves as xn+1 = f (xn), i.e. the next point of the

iteration depends on the previous point. The logistic map is one of the classical examples,

defined [109] by:

xn+1 = rxn(1− xn). (3.5)

This simple expression, originally used to describe evolution of insect population,

reveals very distinct behaviour for varying free parameter r. A few examples of the time-

series are displayed on Fig. 3.10. For small values of r, x quickly decays to zero. For

r values between 1 and 3, x will stabilize at some value between 1 and 0.67. Above

this, we might observe x oscillating between different values, or following complicated
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trajectories. For r > 4, x diverges to −∞, so we do not consider this option.

Figure 3.10: Examples of the time-series from the logistic map for different values of
the free parameter r. We consider a initial condition x0 = 0.2.

Plotting the possible values of x in function of the free parameter leads to a bifurca-

tion diagram such as Fig. 3.11. We will split this in different regions of interest:

1. zero-value, for r ∈ [0,1]

2. fixed-point or period-1, for r ∈ (1,3]

3. period-doubling cascade, for r ∈ [3,3.57]

4. chaotic region with embedded periodic windows, for r ∈ (3.57,4)

5. full chaos, for r = 4

Some remarkable periodic windows are the period-3 in r ∈ (3.83,3.86) or, zooming

in, the period-9 in r ∈ (3.6871968,3.6873708), among others. These windows occur after

the attractor collides with an unstable fixed point or a periodic orbit, a condition referred

as crisis [110]. This interval in particular is for the attractor meeting a solution of period-

3. Such periodic solution is within the attraction basin, and additionally we can observe



3.3. TEST-BENCH DYNAMICAL SYSTEM: LOGISTIC MAP 59

Figure 3.11: Bifurcation diagram of the logistic map. The initial condition for each r
was selected at random and the first 5000 points of x were discarded as transient. 1600
possible values of r are considered (resolution: δ r = 0.0025), and in each case the first
non-transient 400 points of x are plotted. A transparency (αch = 0.05) is added to the
colour of the points, so the regions with higher and lower density of points can be better

visualised.

the size of the attractor increasing abruptly when the approaches the end. This type of

crisis is classified as interior crisis. Another type of crisis is the sudden destruction of the

attractor for r > 4, the boundary crisis. As the boundary crisis in our case simply leads to

a divergence (an orbit being attracted to the infinite attractor, which we do not consider in

this thesis), it does not represent a particular issue, as long as we respect r ≤ 4. However,

near the interior crisis the time-series from the logistic map will experience bursts of

chaotic and periodic behaviour, such as exemplified in Fig. 3.12. This phenomena is

called intermittency [111]. As we have shown, observed tidal variations are not fully

periodic, exhibiting a small positive Lyapunov exponent. A time-series with intermittency

could act as a testbench for cases where almost-periodicity is observed. Therefore, our

parameters r of choice will be: r = 3.6871960 when we require a intermittent time-series,

or r = 4 when we require a chaotic time-series.

3.3.1 Coupled logistic maps

Our purpose is to analyse the casual link between two variables by measuring the inform-

ation exchange. For this, we will use the logistic maps as benchmarks for the time-series,
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Figure 3.12: Time-series of the logistic map showing intermittency, for r = 3.6871960
and initial condition x0 = 0.2. Note the time-series shifting between chaotic and peri-

odic behaviour, despite the system not yet residing in the period-9 window.

but it is necessary to connect them. We consider two configurations for coupling the

logistic systems. One is the linear diffusive coupling, expressed by

xi
n+1 = (1−σ) f (xi

n)+
σ

ki
∑

j
A ji(x j

n− xi
n), (3.6)

where f (x) is the logistic function, i.e. f (x) = rx(1− x).

The other is using a coupling term following the Kaneko proposal for coupled map

lattices (CML) [112]:

xi
n+1 = (1−σ) f (xi

n)+
σ

ki
∑

j
A ji f (x j

n). (3.7)

The superscripts i, j inform which variable is being considered, and the matrix A is

the adjacency8 matrix, with A ji = 1 for a causal link x j→ xi and zero otherwise. We will

refer the system as a coupled logistic map if there are only two elements, meaning A is a

2x2 matrix, and a logistic network if the number of elements is greater. ki is the incoming

degree of the i-th node, i.e. 0 if there is no link pointing to i, 1 if there is one link, and so

8We adopt here the convention that the columns indicate the receiving ends of the edges. Although this
convention might not be the tradition in dynamical systems, it is the standard of Matlab/Octave, which is
why we adopt it.
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on. By convention, if ki = 0 the whole coupling term is assumed zero.

In Fig. 3.13 it is displayed the phase-space of the coupled logistic map systems

of Eqs. 3.6 and 3.7 for x1 → x2, r = 4 and increasing σ . Both coupling types show

similarities, promoting synchronization as the coupling strength is increased. At σ = 0.5,

the CML system exhibits synchronization of the type x1=x2. The linear diffusive system

progressively collapse its bands until forming a parabola shape of x2 with respect to x1 by

σ ≈ 0.45. By σ = 0.5 the solutions already collapsed, with x2 diverging to +∞.

We may recap the procedure of symbolic encoding and construction of the parti-

tioned space (Sec. 3.2.2) and observe the location of the partition boxes on the coupled

logistic map system. This is displayed on Fig. 3.14, for increasing symbolic length L.

In this case we plot the coupled logistic map system for x1 → x2, with both linear dif-

fusive and CML coupling. It is observed that the partition division lines of the cause x1

remain straight, while the lines of the effects x2 start to bend for increasing L forming

bubble-shaped features discussed in [113, 114]. By analysing the backward iteration of

the division lines (at 0.5), the authors conclude that the formation of bubbles is intrinsic-

ally connected to the flow of information between the two variables. On Fig. 3.15, we plot

the cases without a physical connection and with a physical connection in both directions

(x1↔ x2). Again, it is observed bubble-shaped features for increasing L in the connected

system, this time on both axis, whereas such features are absent when there is no link.
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Figure 3.13: Phase-space plots with 100000 non-transient points of the coupled logistic
maps x1→ x2, for r = 4 and varying coupling strength σ . The first 5000 points of the
time-series are discarded as possible transient. A transparency (αch = 0.05) is added.
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Figure 3.14: Phase-space plots of the coupled logistic map x1→ x2 showing the loca-
tion of the partitioned space for binary partition. The symbolic sequence splitting line
is 0.5 on both axis. Each colour represents a value of the symbolic encoding φ(x,y).
The system parameters are r = 4 and coupling strength σ = 0.1 and a total of 5000000
non-transient points are displayed. The first 5000 points of the time-series are discarded

as possible transient.
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Figure 3.15: Phase-space plots for the system of Eq. 3.7 (logistic with CML coupling),
for no coupling between x1 and x2 or for bi-directional coupling (i.e. Ai j = 1 for i 6= j
and 0 otherwise) with strength 0.1. Again, we show the partitioned space for binary
partition, with symbolic sequence splitting line at 0.5 on both axis. Each colour rep-
resents a value of the symbolic encoding φ(x,y). The logistic free parameter is r = 4
and a total of 5000000 non-transient points are displayed. The first 5000 points of the

time-series are discarded as possible transient.
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3.3.2 Logistic networks

For more than two nodes, we refer to the system as a logistic network. This also follows

the expressions of Eqs. 3.6 and 3.7 for the linear diffusive or CML coupled systems,

but, by increasing the size of the adjacency matrix, more combinations of links can be

explored. In particular we investigate the following options: a serial network (Fig. 3.16),

a parallel network (Fig. 3.17) and a directed tree network (Fig. 3.18).

Figure 3.16: Example of serial network with 10 nodes

Figure 3.17: Example of parallel network with 10 nodes

Figure 3.18: Example of a directed tree network with 6 nodes. In this example the
extremities are at distance 3.

These three cases attempt to capture the local topologies found in real-world net-

works and that would constitute fundamental topologies to study how information decays

in more larger networks in terms of topological invariants. This analysis is inspired in the



3.3. TEST-BENCH DYNAMICAL SYSTEM: LOGISTIC MAP 66

same strategy used by Kirchhoff to calculate equivalent resistances or equivalent capacit-

ances in terms of simple topological rules (resistors in series or in parallel). We aim at

understanding what would be these simple rules in regards to the decay of information.

The serial case (Fig. 3.16) enables the understanding of how information decays as the

topological distance between nodes increases. The parallel case (Fig. 3.17), permits to

understand how the information decays or is intensified as information flows simultan-

eously by parallel paths. Topology in Fig. 3.18 is inspired in the way electricity is traced

in power systems [115]. This topology is the simplest case from which one can trace the

power flow departing generators and arriving at another nodes, representing, for example,

electricity consumers.



Chapter 4

Information theoretical quantities and

causality

In this chapter we introduce the theoretical basis for our method of calculating the flow

of causal information from time-series, finishing with the description of the developed

algorithm in Matlab. With this method we intend to define the arrow of causality between

two physical variables, in particular of seismic occurrence with precursor candidates, with

results presented in the next chapters.

4.1 Entropy and Mutual Information

Entropy in thermodynamic systems refers to a measure of the number of different micro-

scopy configurations enabling the same macroscopic state. Thus, it can also be interpreted

as a measure of how disordered a thermodynamical system is, i.e. how much knowledge

do we have of the thermodynamic process on the microscopical level. Shannon [116, 117]

extended the concept to communication systems, which later become a theory of informa-

tion, by considering entropy as a measure of the uncertainty or unpredictability of a state.

For a random variable X , the entropy is defined by

H(X) =−
nb

∑
i=1

px(i) log px(i), (4.1)

where px(i) ∈ [0,1] represents the probability of finding X in one of the possible nb dis-

crete states.



4.1. ENTROPY AND MUTUAL INFORMATION 68

The logarithm can be taken with base 2 or e, providing a result in bits or nats, re-

spectively. In this thesis we will adopt bits, but the developed codes enable both cases.

The entropy of a fully predictable system (equivalent to a system presenting one state

with probability 1 and the remaining with zero probabiity) is zero, whereas the entropy

of a fair coin toss (two equiprobable states) is 1 bit. Shannon entropy is upper bound by

log(nb), where this bound is reached when the system has equal probabilities and equal

to p(i) = 1
nb

. Furthermore, entropy is always positive, as p(i) ∈ [0,1]. The concept of

entropy can be also applied to a partitioned system, to analyse the uncertainty over sym-

bolic sequences with length L built from measurements of x(t). In this case, the entropy

is calculated over the L-order partitioned space, by using the boxes φx(i) representing the

trajectory of the points. This way, we only rewrite Eq. 4.1 as

H(XL) =−∑
φx

px(φx) log px(φx). (4.2)

Note that L = 1 retrieves the previous case.

So far we have only defined entropy for a univariate system. For the investigation of

bivariate systems, the concepts of joint and conditional probabilities can also be applied

to define joint and conditional entropies, H(X ,Y ) and H(X |Y ),

H(XL,YL) =− ∑
φx,φy

p(φx,φy) log p(φx,φy), (4.3)

H(YL|XL) =−∑
φx

p(φx)∑
φy

p(φy|φx), log p(φy|φx)

=− ∑
φx,φy

p(φx,φy) log p(φy|φx),

(4.4)

given for length-L symbolic sequences based on the variables X and Y . The joint entropy

H(XL,YL) informs the overall uncertainty over the complete partitioned system with the

two variables, while the conditional entropy H(YL|XL) reflects the uncertainty over the

length-L sequences in Y when X is known.
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An additional quantity is the Mutual Information shared by the two variables, defined

by

I(XL;YL) = H(XL)+H(YL)−H(XL,YL),

= ∑
φx,φy

p(φx,φy) log
p(φx,φy)

p(φx)p(φy)
.

(4.5)

This is a measure of the amount that the uncertainty of a variable is reduced by knowing

the other. Notice, though, that this is equivalent to the intuitive principle of the amount of

information that a variable has about the another.

The mutual information is also a positive number, with a maximum value given

for the identity case (XL = YL), where it is equal to the Shannon entropy. When the

knowledge of a variable cannot provide information about the current state of the other

variable, the mutual information is zero. Furthermore, mutual information is symmet-

ric, i.e., I(X;Y)=I(Y;X). The consequence is that, although it is a quantity identifying an

information link between the two variable, it cannot be used to identify the direction of

information flow. The relation between entropy, conditional and joint entropy, and mutual

information is given by the Venn diagram of Fig. 4.1.

H(XL|YL) H(YL|XL)I(XL;YL)

H(XL) H(YL)

H(XL,YL)

Figure 4.1: Venn diagram showing the entropies, conditional entropies, joint entropy
and mutual information for the symbolic sequences XL and YL.

Each quantity is represented by the area comprised by the circles or their intersec-

tions. The left circle expresses H(XL) and the right circle H(YL), with their overlapping
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grey area being the mutual information between both variables, and the remaining areas

the conditional entropies.

4.2 Transfer Entropy

Transfer Entropy was defined by Schreiber [118] to address the question of the amount of

information that is not simply mutual, correlated, but being actively exchanged, aiming to

indicate the existence and direction of a causal link. For a suspected causation X→Y , the

principle of transfer entropy is to inform how the uncertainty on the future of a variable

Y is reduced by knowing the past of X also given the past values of Y. This can be

alternatively interpreted as the amount of information contained in the future of Y in

relation to the past of X given a known past of Y. As a short-hand notation, we write

the length-L sequence of the past of X as φ−t
x , the length-L of the past of Y as φ−t

y and

the length-L of the future of Y as φ+t
y . The selection of a sequence representing the past

or the future of a time-series is simply done by properly defining the starting time t0

in the expression φx(t = t ′) = ∑
t0+L
i=t0 Sx(t = i)nt ′−(i+1)

s that builds the length-L symbolic

sequence. For example, the past sequence could be given by setting t0 = t − L and the

future by selecting t0 = t +1. With this notation, the Transfer Entropy from variable X to

variable Y can be written as

T EXL→YL = ∑
φ
−t
x ,φ−t

y ,φ+t
y

p(φ−t
x ,φ−t

y ,φ+t
y ) log

p(φ+t
y |(φ−t

x ,φ−t
y ))

p(φ+t
y |φ−t

y )
,

= I(Y+t
L ;(X−t

L |Y
−t
L )),

= H(Y+t
L |Y

−t
L )−H(Y+t

L |(X
−t
L ,Y−t

L )).

(4.6)

This method was successfully applied in recent years to the investigation of the ar-

row of causation from time-series in many fields, from Neurology [119] to Econometrics

[120] and to Social Systems [121]. In particular, transfer entropy generalises the Granger

causality problem [11], of defining the arrow of causation as satisfying the properties of:
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cause must happen before the effect, and cause has a unique information about the ef-

fect. In particular, it has been shown even to reduce to the Granger method, based on

autoregressive modelling1, for special cases [122].

The conditional probabilities inside the logarithm are responsible for breaking the

symmetry between X and Y, hence enabling the determination of the direction of inform-

ation. However, this comes with a cost: the calculation of conditional probabilities are

typically computationally intensive.

4.3 Causal Mutual Information (CaMI)

The Causal Mutual Information (CaMI) is a quantity defined in terms of the physical

notion that if X send causal information to Y , then, longer time observations in the variable

Y should allow the reduction of the uncertainty about the past states of the variable X

[113, 114]. It means, longer observations in Y should allow prediction of the state of the

variable X . This measure is defined by

CaMIXL→YL = ∑
φ
−t
x ,φ−t

y ,φ+t
y

p(φ−t
x ,φ−t

y ,φ+t
y ) log

p(φ−t
x ,φ−t

y ,φ+t
y )

p(φ−t
x )p(φ−t

y ,φ+t
y )

,

= I(X−t
L ;(Y+t

L ,Y−t
L )).

(4.7)

The expression evaluates the ability of (the joint) future and past points of Y predict-

ing the past of X. If such ability exists, it is because X causes Y or because they share

common (non-causal) information, or both.

The Causal Mutual Information is connected with the Transfer Entropy, as demon-

strated:

1Granger method is based on affirming that X Granger-causes Y if an autoregressive model of Y in-
cluding data from the past of X (i.e., yn+1 = ∑

n
i=n−τ∗ a(i)yi + b(i)xi, τ∗ the past time considered) fits bet-

ter to the future of Y than an autoregressive model with data from the past of Y alone (null hypothesis,
yn+1 = ∑

n
i=n−τ∗ a(i)yi).
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CaMIXL→YL = I(X−t
L ;(Y+t

L ,Y−t
L )),

= H(X−t
L )+H(Y+t

L ,Y−t
L )−H(X−t

L ,Y+t
L ,Y−t

L ),

= H(X−t
L )+

[
H(Y−t

L )+H(Y+t
L |Y

−t
L )
]
−
[
H(X−t

L ,Y−t
L )+H(Y+t

L |(X
−t
L ,Y−t

L ))
]
,

= I(X−t
L ;Y−t

L )+T EXL→YL ,

= I(XL;YL)+T EXL→YL .

(4.8)

This supports the initial concept that the ability of predicting the past of X from Y is as-

sociated with common information and causation from X to Y. The property H(X ,Y ) =

H(Y )+H(X |Y ) = H(X)+H(Y |X) is used between the second and third step to rewrite

joint into conditional entropies. In a Venn diagram, the relation between CaMI and Trans-

fer Entropy can be expressed as Fig. 4.2.

Figure 4.2: Venn diagram of the entropies of the symbolic sequences of past of X
and Y and the future of Y, showing the Causal Mutual Information and the Transfer
Entropy. The fraction of CaMI which is disjoint of the Transfer Entropy is the Mutual

Information I(XL;YL).

Both the mutual information and the causal mutual information involve only joint

probabilities, which is easily calculated by the box-binning procedure. Hence it becomes

practical to calculate the transfer entropy from these two quantities instead of the original

definition. Furthermore, the difference of transfer entropy from X to Y can be solely
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calculated from CaMI, as Eq. 4.9. We refer to this net flow of causal information as a

Directionality Index (DirIdx), once its value indicates the direction of the causality arrow.

DirIdx(L) = T EXL→YL−T EYL→XL ,

=CaMIXL→YL− I(XL;YL)−CaMIYL→XL + I(YL;XL),

=CaMIXL→YL−CaMIYL→XL .

(4.9)

Consider now the case of a small network, where the nodes are dynamical systems

producing a measurable time-series and the links are the couplings between each system,

as arrows of causation. In this network, the overall structure can in principle be inferred

from the time-series of the nodes by evaluating the directionality index in time-series

produced by each pair. For that, we use an intuitive notion that if two nodes are directed

connected, the direction of their underlying physical connection is responsible to orient

the flow of information along the same direction. If the first node events causes events

in the second node, DirIdx > 0, whereas, in the opposite case, DirIdx < 0. However, if

DirIdx ≈ 0 there are two possibilities: or there is no causal connection, and the transfer

entropy in both directions is close to zero (as well as the mutual information), or both

systems are completely synchronous; or the Y causes X with about the strength that X

causes Y, which case transfer entropy will be significant. The latter is the case of identities

or bidirectional connection with identical/similar strengths (and similar node dynamics).

Note the dependency of the measures with the symbolic sequence length L. For L= 1

we are only evaluating the effect of a single point of the past of X and Y in influencing

one point of the future of Y. Highly nonlinear systems often require high order partitions

to correctly estimate the quantities and not introducing an artificial memory from the his-

tory of the points. Increasing L for an adequate range allows us to approach the results

from a Generating Markov Partition (the ‘correct’ partition of the system, which exhibits

memoryless property, allowing for the dynamical properties of the system before parti-

tioning being preserved) [123]. This is of particular interest for Seismology. As seen in

Chapter 2, the relation between the occurrence of a seismic event and a precursor may
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not be a simple connection of short-term events, but an accumulation of past X events, or

the lack of them, or even more complex associations impossible to distinguish by simple

direct observation of the time-series.

4.4 Local and delayed Causal Mutual Information
In the work that defined CaMI [113] quantities were estimated using a binary encoding

(nb = 2), with division line at the centre of the domain, and assessing the whole time-

series of a coupled logistic map. The timing of past of X (X−t
L ) was chosen to match with

the past of Y (Y+t
L ), i.e. being t ∈ [t0, t0+L], without any delay between the two variables.

This thesis considers several other configurations for the calculation of CaMI that

might be more appropriate to treat complex systems:

1. Allowed for initial partitions with an arbitrary number of bins, thus an encoding

with an arbitrary number of symbols;

2. Allowed for the bin division lines to be placed at any location within the domain,

so that maximization of the relevant quantities could be seek;

3. Included the possibility of a time-delay between cause and effect;

4. Added the possibility of the analysis being performed in a moving window, so a

Local Causal Mutual Information can be evaluated, possibly for real-time measure-

ments.

Standard choices for the location of the initial partition division lines are locations

which split the domain in equal sized regions (e.g. in the middle of the domain for nb = 2

or every 1/10 of the domain for nb = 10) or positions where the number of points in each

bin is equal (so initial symbolic time-series can be approximated by an uniform distribu-

tion). However, leaving it flexible for more user options is convenient for seismology. If

one of the variables refers to the magnitude of earthquakes in a region along time, it might

be of interest to have the flexibility to classify the threshold for which a causal relation

holds, especially because most precursor candidates are linked only to the larger seismic

events.
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The introduction of a time delay d, so that X−t
L ends at t = t0 +L but Y+t

L only starts

at t = t0+L+d, enables the investigation of the delayed response of the physical system.

By varying the value of d, it is expected that the causal measurements peak at the delays

corresponding to the natural response time between an event in X and a consequence in Y.

In principle, a peak could also be observed for negative delay (d < 0) if the coupled system

observes antecipated synchronization, a counter-intuitive phenomena in some systems,

such as neuron arrays and and master-slave lasers, where Y can synchronize with the

future of X [124, 125]. By monitoring the causality measures with shifting d, it is possible

to question if this is the case for an experimental time-series. The introduction of a moving

window enables the understanding of changes in the causal links along time as long as

there is sufficient number of points within each window. If the structure of a network is

allowed to change through time, then this method could detect these changes.

4.5 Rate of information measures
The Mutual Information Rate (MIR) was firstly mentioned by Shannon as the information

exchange between the two variables per unit time, which was later written [126, 127] as

MIR = lim
L→∞

I(XL;YL)

L
. (4.10)

It is a convenient measure because the choice of a symbolic length, which is somewhat

arbitrary, can be discarded.

In practice, the convergence is fast, with linear relation of I(XL;YL) as a function of

L starting as soon as L = 1 or L = 2. For the largest value of L it is possible that numerical

errors occur, due to the partition space having a large number of cells and some being

underpopulated. Therefore, MIR is calculated as the slope of the linear interval of the

plot of I(XL;YL) in function of L.

We extend the concept of Mutual Information Rate to define a Causal Mutual In-

formation Rate (CaMIR) and a Transfer Entropy Rate (TER), as

CaMIRX→Y = lim
L→∞

CaMIXL→YL

L
, (4.11)
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T ERX→Y = lim
L→∞

T EXL→YL

L
. (4.12)

The principle for calculating these quantities is to have a measure of rate of the

causal information exchange between the variables, and that does not depend on arbitrary

parameters such as the length L of the symbolic sequences.

4.6 Pointwise information measures

The pointwise mutual information (PMI) is a measure defined in Computational Linguist-

ics for analysing the co-occurrence of words in a sentence [128]. However, this can be

extended to the analysis of co-occurrence of two points in any two time-series. The defin-

ition of the pointwise mutual information is given by

PMI(φx,φy) = log
p(φx,φy)

p(φx)p(φy)
. (4.13)

Note that this is the value inside the logarithm term in the original definition of the

Mutual Information (Eq. 4.5), and the summation over the partitions is not employed.

It means that, for each partition, a PMI value is attributed. Consequently, it is possible

to associate for any combination of points x and y from two time-series a value of PMI,

representing the information shared by this specific combination. This quantity can be

equivalently interpreted as a non-linear ‘correlation’ of events for practical applications.

Note that, as the mutual information, the PMI is symmetric. Unlike mutual information,

the PMI can be negative. It yields zero for independent variables, negative for rarely

occurring (x,y) combinations (with probability below that of independent variables), and

increasingly positive as the probability of the co-occurrence increases. A classic example

of negative PMI in Computational Linguistics is the case of a preposition being followed

by another preposition, which is an event less probable in structured English text than in

a randomly generated word sequences.

In analogy to the pointwise mutual information, we define the pointwise transfer

entropy (PTE) as
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(4.14)

This quantity is able to associate, to each set of points of the time-series belonging

to a partition cell, the contribution of that cell to the transmission of information from

one variable to another. A positive value of PT EX→Y means that this point contributes to

reduce the uncertainty in the future of Y (thus an optimal location to observe the system),

whereas a negative value indicates that such combination augments the uncertainty in the

future Y (thus a sub-optimal place to observe the system). By colouring the cells with

the value of the PTE, we can see several interesting dynamical properties of the system.

Same colour cells would indicate regions that are intrinsically dynamically connected, for

example by having orbits that are recurrent to the cell after L iterations. These connected

cells would present, as we will show later, a positive PTE. Cells that present a negative

PTE correspond to cells whose trajectories do not recur after L iterations, thus knowing

that an initial point belong to a cell cannot be used to predict with large accuracy where

the point will be after L iterations. For the practical case of earthquake prediction, it

means that, for each combination of precursor candidate and seismicity occurrence, it

can be associated a pointwise transfer entropy value informing if the precursor is indeed

reducing the uncertainty (i.e. increasing our knowledge) over a future earthquake event,

or if such knowledge cannot be attested from the correlation (i.e., the correlation can be

spurious).

For completeness, we also define a pointwise causal mutual information (PCaMI)

and a pointwise directionality index (PDirIdx):

PCaMIXL→YL(φ
−t
x ,φ−t

y ,φ+t
y ) = log

p(φ−t
x ,φ−t

y ,φ+t
y )

p(φ−t
x )p(φ−t

y ,φ+t
y )

,

= PT EXL→YL(φ
−t
x ,φ−t

y ,φ+t
y )+PMI(φx,φy),

(4.15)
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(4.16)

Observe that they follow the same relations with the PTE and PMI that occurs regarding

CaMI and DirIdx with transfer entropy and mutual information.

4.7 Algorithm of the method and usage

We have developed the Causality Toolbox for Matlab, containing functions to calculate

the Causal Mutual Information, Mutual Information, Transfer Entropy, Directionality In-

dex, Mutual Information Rate, Causal Mutual Information Rate, Transfer Entropy Rate,

Pointwise Causal Mutual Information, Pointwise Transfer Entropy and Pointwise Mu-

tual Information, and, additionally, Multivariate Total Correlation and Multivariate Joint

Entropy.

The latter two are global measures (instead of only pairwise) giving a simplified

measure for the state of the whole system. Total correlation and the multivariate joint

entropy are respectively defined by

C(X (1)
L , . . . ,X (n)

L ) = ∑
φ1...φn

p(φ1, . . . ,φn) log
p(φ1, . . . ,φn)

p(φ1) . . . p(φn)
, (4.17)

H(X (1)
L , . . . ,X (n)

L ) =− ∑
φ1,...,φn

p(φ1, . . . ,φn) log p(φ1, . . . ,φn). (4.18)

We are not going to apply the total correlation and the multivariate joint entropy in

this thesis, as these quantities have been included in the toolbox as the first steps towards

a future definition and calculation of multivariate options for all the measures presented

so far.

The toolbox is available for download on a GitHub2 public repository. It consists

2https://github.com/artvalencio/causality-toolbox

https://github.com/artvalencio/causality-toolbox
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of three Matlab functions, cami.m, totals.m and camir.m with procedures given by Figs.

4.3, 4.4 and 4.5. The function cami.m calculates the Causal Mutual Information, Trans-

fer Entropy, Mutual Information and Directionality Index by simply providing the two

time-series, the location of the initial partitions, the length of the symbolic sequence, em-

bedding delay τ if applicable, and the units (nats or bits). The function totals.m calculates

the total correlation and multivariate joint entropy by the definition when the time-series

of the nodes, partition locations and the symbolic length are provided, together with the

units. Finally, the camir.m function obtains the Causal Mutual Information Rate, Transfer

Entropy Rate and Mutual Information Rate for a range of partition possibilities in X and

Y. The optimal partition is considered to be the one which yields the highest exchange rate

of causal information, so the maximum of CaMIR. For this, results are provided in separ-

ate, for the remaining cases, it is provided as a struct. The inputs are only the time-series

and the units. The function camir.m depends on cami.m.

Figure 4.3: Flowchart of the procedure for calculating the informational measures of
interest: Mutual Information, Transfer Entropy, Causal Mutual Information and Dir-
ectionality Index. This is adopted in the Matlab function cami.m from the Causality

Toolbox.
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Figure 4.4: Flowchart of the procedure for calculating the Total Correlation and the
Multivariate Joint Entropy. This is adopted in the Matlab function totals.m from the

Causality Toolbox.
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Figure 4.5: Flowchart of the procedure for finding the optimal partition and calculating
the values of: Mutual Information Rate, Transfer Entropy Rate and Causal Mutual
Information Rate. In this flowchart example we assume, for simplification, that linear
behaviour of CaMI and mutual information is observed in the L range of 1–4. The
most recent version presents the graph to the user so that he selects the linear portion.
The results from other partition choices is also available. This is adopted in the Matlab

function camir.m from the Causality Toolbox.
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The Matlab call for the function cami.m is:

[ cami_xy , cami_yx , m u t u a l _ i n f o , d i r i d x , te_xy , te_yx , p o i n t w i s e ] =

cami ( x , y , L_pas t , L_fu t , x p a r t , y p a r t , t au , u n i t s , o p t s ) ;

Where x and y are the time-series provided as vector columns. Our implementation

allows to have a different symbolic sequence length L for the past of a time-series and

for the future of the effect (Lpast and L f ut). In particular, the case analysed by Bianco-

Martinez [113, 114], of total symbolic length 2 in X and total symbolic length of 5 in Y

is equivalent to Lpast = 2 and L f ut = 3, i.e., the hypothesis that 2 points in the past of X

and Y determine a 3-point trend in the future of Y. The inputs xpart and ypart are vector

columns of the initial partition locations in X and Y, tau is the embedding dimension τ if

applicable (1 in case of maps) and units is a string ‘bits’ or ‘nats’ as appropriate. Valid

options (opts) include:

• ‘save’: for saving output to file

• ‘delay’, value (number of points to delay): to consider a delay between cause and

effect (delayed CaMI)

• ‘local’, value (number of points in the time-window): to calculate the measures

over a moving time-window

.

The Matlab call for totals.m is:

[ t o t a l c o r r e l , t o t a l e n t r o p y ]= t o t a l s ( x , L , l i n e p o s , t a u ) ;

Where x is a matrix where each column is the time-series of one node. L is the

length of the symbolic sequences and linepos is a matrix informing the position of the

initial partition divisions in each time-series, with the columns representing the same

respective nodes indicated by the columns of x. The input tau, is again the embedding

delay if appropriate, or 1 if the time-series comes from a map.

Finally, the Matlab call for camir.m is:

[ r a t e s , f u l l r e s u l t s ] = cami r ( x , y , t a u ) ;
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Where x and y are the time-series and tau the embedding delay if appropriate. The

outputs rates and fullresults are structs. The first informs the values of main interest: the

optimal partition and the CaMIR, TER and MIR for this partition. The latter informs all

the calculated informational measures and rates for all partitions considered.

4.8 Computational demands

The implementation of the method for calculating CaMI on cami.m has an arithmetic com-

plexity of O
(

n
(2Lpast+L f ut)
b

)
in the main computational part for the flow of information,

and O
(
NT (L f ut +Lpast)

)
for the construction of the partitioned space. In comparison,

a classical implementation for Transfer Entropy from its original definition would have

the same computational complexities in the main part and partitioned space, but with an

additional component for determining the matrix of conditional probabilities, with com-

plexity of at least O
(
NT (L f ut +Lpast)

)
. If converting the conditional probabilities to joint

probabilities the extra arithmetic complexity would be reduced, but there still would be

a larger number of operations to be performed for obtaining the transfer entropy and the

mutual information in comparison to obtaining the transfer entropy from the CaMI and

mutual information. The big-O complexity notation informs not the actual performance

of the code, but a worst-case scenario of memory/time dependence to the main variables.

The actual performance is highly dependable on the machine used.

Timing and memory demand tests were performed in a HP Z220 workstation running

64-bit Ubuntu 14.04LTS, and having 8Mb cache, 4-core 3.4GHz Intel i7-3770 processor,

16Gb 1600MT/s DDR3 RAM memory, and with Swap memory intentionally deactivated,

so that the program automatically stops if the memory requirements surpass the RAM

availability. The dependence of execution time with the total number of points NT of the

time-series is given in Fig. 4.6, where nb = 2 and Lpast = L f ut = 3. Observe that the

relation is linear, as expected. Fixing NT = 106 and nb = 2, the execution time varies with

the symbolic length L (=Lpast = L f ut) according to Fig. 4.7. The relation is no longer

linear, assuming a more complicated form, as expected. For NT = 106 and Lpast = L f ut =

3, the relation of execution time with the number of initial bins nb is described by Fig.
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4.8. Note that the execution time grows considerably fast the number of bins, as expected.

Figure 4.6: Time performance of cami.m in function of the number of points of the
time-series.

Figure 4.7: Time performance of cami.m in function of the symbolic length L= Lpast =
L f ut.

Figure 4.8: Time performance of cami.m in function of the number of initial partition
bins nb.

The same procedure was performed for memory usage. It must be stressed that we

are limiting our calculations to cases where there is an average of 30 points or more per
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3-dimensional (φ−t
X ,φ−t

Y ,φ+t
Y ) box. This is an arbitrary and conservative choice to ensure

the computation of the probabilities of each cell of the partitioned space is statistically

significant. It was observed no significant variation of memory usage with the total num-

ber of points N of the time-series, when nb and Lpast = L f ut = L are fixed. However,

selecting NT = 106 and nb = 2, the maximum memory usage changes with the symbolic

length L (= Lpast = L f ut) as Fig. 4.9 presents. The memory usage is dominated by the

step of defining the partitioned space and obtaining the probabilities, expressing a linear

growth, as expected. Finally, setting NT = 106 and Lpast = L f ut = 3, Fig. 4.10 gives the

relation of maximum memory usage with the number of initial bins nb. Once again, note

that the memory usage can increase significantly with the number of initial partition bins.

Figure 4.9: Memory usage of cami.m in function of the symbolic length L = Lpast =
L f ut.

Figure 4.10: Memory usage of cami.m in function of the number of initial partition
bins nb.

The memory values displayed here refer to the observed difference between the total
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RAM used and the cached RAM memory of the workstation when running the function.

It was also subtracted the memory usage of the operational system, background programs

and the Matlab work environment itself, so that only the memory consumption by the

cami.m function is presented in the plots. The memory profiling procedure was performed

separately from the time profiling, so that this memory usage computation did not affect

the results of execution time. Windows users can use the Matlab in-built function memory

for this procedure, but this is not available for linux users. We have deposited on Github

the solution memmonitor.m adopted for Ubuntu (https://github.com/artvalencio/

tools).

https://github.com/artvalencio/tools
https://github.com/artvalencio/tools


Chapter 5

Assessing causality to test-bench

systems

This chapter presents the results of a comprehensive causality analysis to characterise

test-bench systems. The primary goal is to observe if proposed methodology with the

quantities introduced in the previous chapter is capable of correctly identify the arrow

of influence in numerically generated time-series. By construction, we know what is the

direction of causality, but this is not assumed to be unknown to whom has access to the

time-series (emulating a situation where someone is collecting the data from measure-

ments), and the direction of the link is not clear from direct observation. We observe that

the directionality index calculated from CaMI not only correctly identify the direction of

causality, but also the mutual information provides a reliable parameter for the identifica-

tion of the strength in coupled logistic maps. It is also shown that the calculation from the

information rates (CaMIR, transfer entropy rate and mutual information rate) lead to sim-

ilar results, with one less arbitrary parameter. The applications are extended to networks,

where the directionality index from the rates correctly informs the direction of a link, but

the mutual information rate better indicates the strength of a link. In conjunction with

transfer entropy rate, the mutual information rate may support the identification of direct

or indirect links in a causal network. We consider the information flow when the con-

nections are of CML type or linear diffusive, and the effects when the information from

a chaotic node is transmitted in a path of periodic nodes or chaotic nodes (chaotic or a
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periodic channel [129]) until reaching final nodes which are also chaotic. Consequences

of the introduction of dynamical noise are also explored. In this chapter we will adopt

Lpast = L f ut = L for simplification. Numerical values of CaMI, transfer entropy, mutual

information and directionality index are in bits, and of CaMIR, transfer entropy rate and

mutual information rate in bits/iteration.

5.1 Pseudo-random noise

The first question is how this method to assess causality responds to a fully unconnected

and uncorrelated system. A classical example with any method based on calculation of

probabilities is the fair-coin toss problem. For two independent fair coin-tosses, we can

record the sequential outcomes as the time-series X and Y. The events being completely

independent implies that both the mutual information and the transfer entropy are zero by

definition, and consequently are the CaMI and the directionality index. Therefore, testing

our methodological approach against the fair-coin toss case reveals to which conditions

our method to detect causality provides outputs that cannot be discernible from those

coming from random uncorrelated systems. In this case, the fair-coin is generated by

the Matlab in-built pseudo-random routine (rand) producing a [0,1] uniform distribution,

which is then encoded as heads (‘0’) or tails (‘1’) by dividing at the 0.5 line in each

time-series.

The outcome from the function varies in symbolic length L as in Fig. 5.1, for the

number of points NT fixed in 106. The errors in the mutual information are of about

6 · 10−4, whereas in the transfer entropy (and consequently in CaMI) are smaller than

5 ·10−3 until L = 4 and about 2.3 ·10−2 for L = 5. If we fix the symbolic length to L = 3,

the error of informational measures decrease with the number of points NT as Fig. 5.2.

Observe that as the number of points available in the time-series decreases by one order

of magnitude, so the accuracy reduces by one decimal place. For example, it means that

while for NT > 106 errors in CaMI and CaMIR are in the fourth decimal place, if only

NT = 2 ·105 points are available, these errors increase to the third decimal place, whereas

if NT = 2 ·104 they go to the second decimal place and so on.
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Figure 5.1: Informational measures for a two uncoupled pseudo-random time-series
(uniform [0,1] distribution), for varying symbolic length L, nb = 2. A total of 106 time-

series points are used in the analysis.
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Figure 5.2: Informational measures for a two uncoupled pseudo-random time-series
(uniform [0,1] distribution), for varying number of points NT , with number of initial

partitions nb = 2 and symbolic length L = 3
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The reason that these quantities provides incorrect information for larger L is due

to the time-series being finite. Assuming an initial binary partition (with 22 cells), when

treating symbolic sequences of length L will produce 22L cells for the calculation of mu-

tual information and 23L cells for the calculation of CaMI and transfer entropy (due to

considering an axis of the past of Y and another for the future of Y). Probabilities in the

cells will be evenly distributed, roughly uniform, since the data is random and decorrel-

ated. Because the number of points is finite, the less equal the proportion of number of

points in each box, the larger the L. Since cells will not all be visited with exactly the same

frequency (except in the limit NT → ∞), it creates an artificial illusion for information.

5.2 Application to coupled logistic maps

5.2.1 Error levels: uncoupled system

Moving from a stochastic to a deterministic dynamical system, our starting question is if

we observe the same behaviour for a case where it is known the informational measures

should yield zero. Hence, we create the time-series from two uncoupled (Ai, j = 0) logistic

maps with free parameter r = 4. Indeed, the method produced the same output for the

uncoupled logistic maps, as expected, once there is no exchange of information between

the two systems. Furthermore, the logistic map for r = 4 and a partition line at 0.5 (which

is a Generating Markov Partition) leads to a fully random uncorrelated symbolic sequence.

This is presented on Fig. 5.3 for dependency on the symbolic length and Fig. 5.4 for

dependency on the number of time-series points, where precisely the same error margins

for the same informational quantities are observed. In particular, we highlight that for

NT = 106, the errors in CaMI, CaMIR, transfer entropy and transfer entropy rate are in

the third decimal place, while in the mutual information and mutual information rate

are in the fourth decimal place. This method is intended to be applicable to time-series

in excess of 103 points. For the minimal case (NT = 103) the errors in CaMI, CaMIR,

transfer entropy and transfer entropy rate are in the first decimal place, whereas in the

mutual information and mutual information rate are in the second decimal place.
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Figure 5.3: Informational measures for a two uncoupled logistic time-series (r = 4,
Ai, j = 0), for varying symbolic length L, nb = 2. A total of 106 non-transient time-

series points are used in the analysis.
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Figure 5.4: Informational measures for a two uncoupled logistic time-series (r = 4,
Ai, j = 0), for varying number of points NT , with number of initial partitions nb = 2 and

symbolic length L = 3.
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5.2.2 Diffusive coupling

The first coupled system we study is the coupled logistic map with linear diffusive (Eq.

3.6) in the configuration X → Y . The phase-space of this system changes with different

coupling strengths such as seen in Chapter 3 (Fig. 3.13 (left)). For a total of 106 points,

binary partitioning (nb = 2) and a sequence length of L = 3, the informational measures

vary with the coupling strength σ as Fig. 5.5. In this case, we have fixed the symbolic

sequence length to L = 3 to reveal the behaviour of the CaMI, transfer entropy, mutual

information and directionality index. The directionality index is positive, correctly indic-

ating that the information flows from X to Y.

The mutual information dominates the CaMI contribution except for the very low

coupling strength. Moreover, the relation of the mutual information with the coupling

strength is almost linear for this type of coupling. For the diffusive coupling it is also

observed that the transfer entropy in the direction X → Y is at an almost constant level

of 0.8 bits for a large interval for the chosen parameters. A small valley is observed

near the coupling σ = 0.2. The transfer entropy and transfer entropy rate in the opposite

direction is 1-2 orders of magnitude smaller, increasing linearly for σ > 0.25. This is

an indicator that from this point we are entering the high intensity coupling regime. The

CaMIR is dominated by the mutual information rate, which increases almost linearly with

the coupling strength. Notice that it is also possible to correctly identify the direction of

causality from the difference of CaMIR in each direction. It is preferred to analyse based

on the CaMIR, once the numerical values are independent of an user selection of the

partition resolution.

The numerical values of these informational quantities depend on the user choice of

the length of the symbolic sequence or the number of initial partitions, which, ultimately,

are measures of the resolution of the analysis. Figs. 5.6 and 5.7 reveal how these numbers

change as the user selects different L and nb parameters. Although there is an overall

trend of increase of the numerical values of the informational quantities for increasing

resolutions, the relation is not necessarily linear, so the resolution must be informed. In

particular, the rates have to be calculated over a linear portion of the dependence with
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Figure 5.5: Informational measures for a time-series from coupled logistic X → Y
(r = 4) map with diffusive coupling. Values for L = 3, nb = 2 and varying coupling

strength σ . A total of 106 non-transient time-series points are used in the analysis.
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L (Fig. 5.6), which in this case is attainable in the interval L ∈ [2,4]. The reason of

why L = 5 produced a discrepancy to the trend is because at this resolution there will

be cells with insufficient points, not enabling the determination of the true distribution of

probabilities for a proper statistical count.

Figure 5.6: Informational measures for a time-series from coupled logistic X → Y
(r = 4) map with diffusive coupling. Values for nb = 2, σ = 0.1 and varying symbolic

length L. A total of 106 non-transient time-series points are used in the analysis.

Figure 5.7: Informational measures for a time-series from coupled logistic X → Y
(r = 4) map with diffusive coupling. Values for L = 3, σ = 0.1 and varying number of
initial bins nb. A total of 106 non-transient time-series points are used in the analysis.
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If a small coupling is included in the opposite direction (i.e. a X ↔ Y system,

with σx→y � σy→x) no noticeable effects are observed. This occurs because the par-

titioned space does not change significantly (causal bubbles only in the main direction

of influence). As the coupling strength increases to a similar value in both directions

(σx→y ≈ σy→x = σ ), the system changes considerably. Non-synchronous solutions exist

only for σ < 0.1, and the partition space presents a symmetric causal bubble, not allowing

for the identification of a predominant net flow of information, as observed in Chapter 3

(Fig. 3.15 (right)). The informational quantities for this system varies with the coupling

strength as in Fig. 5.8.

Figure 5.8: Informational measures for a time-series from coupled logistic X ↔ Y
(r = 4) map with diffusive coupling. Values for L = 3, nb = 2 and varying coupling
strength σ . A total of 106 non-transient time-series points are used in the analysis.

Notice that the quantities in the direction X → Y and Y → X overlap, as expected.
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The directionality index is within the expected error level in the third decimal place,

hence showing no preferential direction, as expected. However, all other informational

quantities hold significant values, indicating that there is information exchange between

the systems, allowing the conclusion that both systems influence each other equally. This

time the mutual information and mutual information rate do not grow linearly. However,

it must be noted that from σ = 0.8 the system begins to synchronize. The system also

synchronises at σ = 0.4, converging to two points in the phase-space, which explains the

peak in mutual information. For the intervals far from synchronisation, mutual informa-

tion and mutual information rate grow linearly with coupling strength.

For a weakly coupled (σ = 0.1) X → Y system we also investigate the distribu-

tion of the pointwise information measures in the phase-space. The results for increasing

symbolic length L are shown in Figs. 5.9 and 5.10. Although the PMI starts almost homo-

geneous with high pointwise mutual information (only one outlier partition, equivalent to

an independent measure), as the symbolic length increases different centres of high point-

wise mutual information start to form, with a comparatively lower PMI in between. These

centres are the areas inside the causal bubbles presented in [113, 114]: enclosed areas

formed by the backward iterations of the partition lines. The formation of the bubbles is

a feature of the flow of information between the two variables.

In the pointwise transfer entropy, not only the bubbles in the same regions are visu-

ally evident with lower L, but also it can be observed a ring-formation pattern, of alternat-

ing high and low transfer entropy. In these areas, mostly corresponding to the edge of the

bubbles, there is significant knowledge on the future of the effect. On the outside of the

rings, and sometimes even between the rings, the pointwise transfer entropy can be neg-

ative. In these areas the uncertainty of the future effect increases. The poinstwise causal

mutual information and pointwise directionality index largely follow the results from the

pointwise transfer entropy. The pointwise directionality index, in particular, suggests that

these causal bubbles are the main contributors for the information flow properly indicating

the underlying physical causation. Few areas between these centres indicate the opposite

direction, which is an open question.
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Figure 5.9: Pointwise mutual information (left column) and pointwise transfer entropy
(right column) for a time-series from coupled logistic X → Y (r = 4) map with linear
diffusive coupling. Values for nb = 2 and σ = 0.1. A total of 2 · 105 non-transient

time-series points are used in the analysis.
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Figure 5.10: Pointwise causal mutual information (left column) and pointwise direc-
tionality index (right column) for a time-series from coupled logistic X → Y (r = 4)
map with linear diffusive coupling. Values for nb = 2 and σ = 0.1. A total of 2 · 105

non-transient time-series points are used in the analysis.
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5.2.3 CML coupling

A new question is how the results differ when a different kind of physical coupling mech-

anism is in place, such as the CML coupling scheme (Eq. 3.7). We first build such a

system with X → Y causation, for varying coupling strength σ in the (0,0.4] range. The

changes in the phase-space with σ was also seen in Chapter 3 (Fig. 3.13 (right)).

Figure 5.11 shows the results for L = 3 and nb = 2 using NT = 106 points. A few

differences with respect to the linear diffusive case are evident. The first is that the transfer

entropy in the direction of the causal flow is not almost constant this time. It presents a

sharp peak in σ = 0.2, followed by a valley at σ = 0.25. Also, the transfer entropy in

the opposite direction grows linearly with the coupling strength even for small σ , despite

only reaching a significant value for σ > 0.25. Another aspect is that this time the transfer

entropy in the opposite direction can yield values of about half the transfer entropy in the

causal direction. The directionality index indicates the correct direction for all σ and

the mutual information increases about linearly with the coupling coupling strength. The

mutual information rate increases almost linearly, except for the peak on σ = 0.2. From

the difference in CaMIR the correct direction of causality can also be identified. The

transfer entropy exhibits a sharp peak at σ = 0.15.

Once again we question what is the variation of the numerical values obtained with

the parameters of choice of the user. For the variation with the symbolic sequence length L

(Fig. 5.12) this time we observe an almost linear increase in all informational quantities in

the range L ∈ [1,5]. It means that the whole interval can be considered for the analysis of

the informational rates. With respect to the variation with the number of initial partitions

nb (Fig. 5.13), the same behaviour of a general growth (but in most cases not linear)

is observed, like the case with diffusive coupling. Hence the analysis is effective for a

significant range of parameter L. It is preferred to select the smaller symbolic lengths to

which the method is applicable once it is less computationally expensive and carries less

errors from underpopulation of the partition cells.

The pointwise informational measures were also obtained for the CML coupling, in

the low coupling σ = 0.1 regime for different L, as shown in Figs. 5.14 and 5.15. This
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time the pointwise mutual information shows the causal bubble structure with one central

bubble and three other in homoclinic points of the system. These points are dense, so

the mutual information increases. The pointwise transfer entropy also exhibits patterns

corresponding to these causal bubble areas.

Figure 5.11: Informational measures for a time-series from coupled logistic X → Y
(r = 4) map with CML coupling. Values for L= 3, nb = 2 and varying coupling strength

σ . A total of 106 non-transient time-series points are used in the analysis.
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Figure 5.12: Informational measures for a time-series from coupled logistic X → Y
(r = 4) map with CML coupling. Values for nb = 2, σ = 0.1 and varying symbolic

length L. A total of 106 non-transient time-series points are used in the analysis.

Figure 5.13: Informational measures for a time-series from coupled logistic X → Y
(r = 4) map with CML coupling. Values for L = 3, σ = 0.1 and varying number of
initial bins nb. A total of 106 non-transient time-series points are used in the analysis.
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Figure 5.14: Pointwise mutual information (left column) and pointwise transfer en-
tropy (right column) for a time-series from coupled logistic X → Y (r = 4) map with
CML coupling. Values for nb = 2 and σ = 0.1. A total of 2 · 105 non-transient time-

series points are used in the analysis.
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Figure 5.15: Pointwise causal mutual information (left column) and pointwise direc-
tionality index (right column) for a time-series from coupled logistic X→Y (r = 4) map
with CML coupling. Values for nb = 2 and σ = 0.1. A total of 2 · 105 non-transient

time-series points are used in the analysis.

The causal bubble area has high pointwise transfer entropy in this system only up to
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L= 3. As L increase to [4,5], the pointwise transfer entropy becomes very high on singular

points, almost shadowing the formation of ring patterns of alternating positive (yellow) –

zero/negative (blue) transfer entropy. On this particular case, the ring patterns is visually

more evident on the pointwise causal mutual information and pointwise directionality

index. This case also shows that the directionality index is not homogeneously in the

causal direction, the causes for which remains to be investigated.

5.2.4 Including dynamical noise

We consider the linear diffusive coupled logistic map system X → Y from Eq. 3.6, but

modify the logistic function f (x) = rx(1− x) so to include an additive noise term. This

way, the new function is given by f ′(x,n) = (1− λ )rx(1− x) + ληn, with λ the level

of noise and ηn the specific value that a noise term from an uniform distribution [0,1]

holds at iteration n. As the noise term is included in the logistic function, each node

yields a different noise value at iteration n. On the low-coupling regime (Fig. 5.16), these

quantities decrease very fast towards zero, already halving at λ = 0.05 noise level for the

case σ = 0.1. The directionality index drops to about 10% of the original value (without

noise) when λ = 0.1, making the determination of the causal direction more difficult for

higher noise amplitudes.

Figure 5.16: Informational measures for a time-series from coupled logistic X → Y
(r = 4) map with diffuse coupling and additive dynamical noise. Values for L = 3,
nb = 2 and σ = 0.1 (low coupling strength) and varying noise level λ . A total of 106

non-transient time-series points are used in the analysis.
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For the high-coupling regime (Fig. 5.17), the system is more resilient. All quantities

(except transfer entropy in the opposite direction, which is naturally small) decay linearly

with increasing noise λ . The quantities remain sufficiently high so that the direction of

causation can be reliably identified even for λ >> 0.2. The decay of mutual information

with noise, however, proves an intrinsic problem in applications to real-world systems.

There can always be an ambiguity of whether the obtained value reflects a true relatively

lower coupling nature of the physical system, or if it is so because of addition of noise (in

the physical process or in its measurement).

Figure 5.17: Informational measures for a time-series from coupled logistic X → Y
(r = 4) map with diffuse coupling and additive dynamical noise. Values for L = 3,
nb = 2 and σ = 0.4 (high coupling strength) and varying noise level λ . A total of 106

non-transient time-series points are used in the analysis.

5.2.5 Connecting a chaotic and an intermittent system

Finally, we consider two systems: a chaotic node attempting to drive an intermittent one,

and an intermittent driving a chaotic. The latter case might simulate, for a short interval of

time during the laminar phases of the intermittent behaviour when the trajectory behaves

“almost periodically", the case of tides influencing a non-periodic system, such as seismic

occurrence. The first case might be of interest to potential precursor candidates with the

link to the seismic occurrence mediated by a system that is almost periodic at times and

chaotic at other times (e.g. possibly strain changes). This analogy, however, is only to
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illustrate a possible link to the current methodological analysis, since our interest here

is only to understand how is given the flow of information when the active channel is

not only given by chaotic dynamics. The case of networks with chaotic nodes at the

extremes and a periodic channel uniting them will be explored in the next section. Outside

seismology, this encounter applications in areas related to communication.

First, we build a linear diffusive X → Y coupled logistic map with rx = 4 and

ry = 3.6871960 and varying coupling strength σ . This reflects a chaotic system attempt-

ing to drive an intermittent system. Fig. 5.18 shows the results. The directionality index

indicates the correct causal direction. The mutual information and mutual information

rate grow monotonically with the coupling strength. The transfer entropy in the causal

direction is around 0.6–0.9 bits for L = 3 and nb = 2. In the opposite direction the transfer

entropy is much smaller, of 0.05 – 0.2 bits. The value of CaMI is dominated by the mutual

information. The CaMIR and MIR follow a similar pattern of CaMI and mutual inform-

ation. For very high coupling (σ > 0.35) the transfer entropy rate, as well as CaMIR,

becomes very close in both directions, consequence of the increase of the synchroniz-

arion level. Although transfer entropy rate in the causal direction becomes very close

to the value in the opposite direction, the arrow of causality could still be defined in the

correct direction with the absolute quantities, i.e. CaMI and transfer entropy.

Then, we build a linear diffusive X → Y coupled logistic map with rx = 3.6871960

and ry = 4 with varying σ , representing an intermittent system attempting to drive a

chaotic. Fig. 5.19 shows the results. The directionality index once again indicates the

correct arrow of causality. The transfer entropy in the causal direction is about 5 times

larger than in the opposite direction. The relation of mutual information with the coupling

strength is not trivial this time, but a growing trend still can be observed of I(XL;YL) with

σ . In general terms, the same applies for the the mutual information rate apart from the

higher coupling strength. The causal direction could also be inferred by the rates (CaMIR

or transfer entropy rate).
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Figure 5.18: Informational measures for a time-series from coupled logistic map X →
Y from chaotic to almost periodic (rx = 4, ry = 3.6871960), with diffuse coupling.
Values for L = 3, nb = 2 and varying coupling strength σ . A total of 106 non-transient

time-series points are used in the analysis.



5.2. APPLICATION TO COUPLED LOGISTIC MAPS 110

Figure 5.19: Informational measures for a time-series from coupled logistic map X →
Y from almost periodic to chaotic (rx = 3.6871960, ry = 4), with diffuse coupling.
Values for L = 3, nb = 2 and varying coupling strength σ . A total of 106 non-transient

time-series points are used in the analysis.
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5.3 Application to logistic networks

We consider three small networks built from coupled logistic maps to investigate the case

of mediated causation. This could help explain the cases of precursors which are not direct

causes for earthquake occurrence, but mediated by another physical process, for example

strain changes. Three topologies are considered: serial (all nodes in sequence), parallel

(one ‘cause’ node and one ‘effect’ node, with several mediators connecting them), and a

tree network (multiple ‘cause’ nodes connect to a common mediating channel, which then

splits to multiple ‘effect’ nodes), which, for simplicity, we keep at maximum distance

of 3 nodes from causes to effects. We will conduct the analysis using the information

rates (CaMIR, transfer entropy rate and mutual information rate), as we have observed to

provide similar results, with one less arbitrary parameter choice (L). A new directionality

index was reformulated as the net transfer entropy rate instead. The networks considered

were shown in Chapter 3, Figs. 3.16, 3.17, 3.18.

5.3.1 Serial network

The first network to be considered is a serial connection of ten nodes (as shown at the end

of Chapter 3, Fig. 3.16) producing logistic maps with r = 4. Our intention is to observe

how the information from the first node decays as it i transmitted along the network and

how this is observed with the information measures considered.

Figure 5.20 reveals the case for when the coupling between the nodes is linear dif-

fusive. Here we evaluate the transmission of information from node 1 to the other nodes

of the network. The horizontal axis refers to the coupling strength and the vertical axis the

i-th node to which the information quantity is being evaluated (e.g., for i=4, we are eval-

uating the information quantities from from node 1 to node 4). The colour indicates the

value of the informational measure. In this case, the mutual information rate grows with

the coupling strength (as investigated previously), and it is highest at the first connected

node, decaying fast for the second connected and being effectively zero on the third con-

nected. The transfer entropy rate, on the other hand, can still hold significant values up to

the fifth connected node, as long as the coupling strength is sufficiently high. However,
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curiously, for high coupling (σ > 0.2) the transfer entropy rate in the causal direction is

highest at the indirectly connected nodes instead of the directly connected1. Reminding

that, for a X → Y system, the phase-space distribution of points starts to squeeze, even-

tually reaching synchronization, as the coupling strength σ approaches 0.4 (Chapter 3,

Fig. 3.13), it is then expected that neighbour nodes would have transfer entropy suddenly

dropping to zero due to this phenomena. More distant nodes would have the points in the

state space more widespread, enabling non-zero solutions for transfer entropy. Once the

transfer entropy rate in the opposite direction is almost zero for all cases, the directional-

ity index follows the transfer entropy rate in the causal direction. The value of CaMIR is

dominated by the mutual information rate.

Figure 5.20: Rates of informational measures from node 1 to nodes i for a 10 node
serial logistic network of diffusive coupling. The directionality index is based on net
transfer entropy rate. All nodes have r = 4 and the time-series consists of 106 non-
transient points. Horizontal axis is the coupling strength, vertical axis refers to the node

being analysed and the colours are the values of each informational measure.

1This phenomenon observed for this simple network is of vital importance, in particular to Neuroscience,
since currently it is not fully understood how the information from a signal entering a neural network can
excite specific regions of the network that are known to be not connected.
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Considering a CML coupling instead, Fig. 5.21 shows that the mutual information

rate grows with the coupling strength in the same way as with the linear diffusive coup-

ling, but the transfer entropy rate in the causal direction has a sharp peak in σ = 0.2, as

discussed previously. Also, the values of transfer entropy rate in the causal direction are

lower and in the opposite direction are higher than the same measures in the system with

linear diffusive coupling. Apart from this, it is still observed the features of the transfer

entropy rate having significant values up to the fifth connected node on higher coupling

strengths, and of its value not necessarily being highest at the second connected node (a

relevant feature also observed in the other coupling configuration). Alas, the directional-

ity index correctly indicates the arrow of causation, but is not as efficient as a parameter

for understanding the coupling strength and the directly connected node as the mutual in-

formation. The CaMIR once again is dominated by the mutual information rate. For both

coupling types the information is lost from the sixth connection onwards for the coupled

logistic maps investigated. This represents a practical upper limit for indirect influence.

The network with the CML coupling configuration presents an exclusive feature, that TER

maximizes its value for two distinct coupling strengths σ . Additionally, mutual informa-

tion (rate) decays as a functional of a topological distance, in this case, the shortest path

length.
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Figure 5.21: Rates of informational measures from node 1 to nodes i for a 10 node
serial logistic network with CML coupling. The directionality index is based on net
transfer entropy rate. All nodes have r = 4 and the time-series consists of 106 non-
transient points. Horizontal axis is the coupling strength, vertical axis refers to the node

being analysed and the colours are the values of each informational measure.
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5.3.2 Parallel network

The second network consists of ten nodes made of logistic maps with r = 4: one ‘cause’

(node 1), eight ‘mediators’ in parallel (nodes 2 – 9) and one ‘effect’ (node 10). The

diagram for this network was presented at the end of Chapter 3, Fig. 3.17. For a diffusive

coupling, Fig. 5.22 shows how the information quantities vary with the coupling strength

(horizontal axis) and from the along the network (vertical axis, measured as from the node

1 to the i-th node as in the previous case). Once again, the mutual information rate is

highest for the direct coupling and increases with coupling strength. The transfer entropy

rate in the causal direction presents a clear threshold: for σ ≤ 0.2 the transfer entropy rate

to the directly connected nodes is higher, but above that the situation inverts, so the ‘effect’

would hold higher transfer entropy with respect to the ‘cause’ than the mediators. Again,

this would be influence of the squeezing of the phase-space of immediate neighbours

when the coupling increases (chapter 3, Fig. 3.13).

Figure 5.22: Informational measures from node 1 to nodes i for a 10 node parallel
logistic network of diffusive coupling. All nodes have r = 4 and the time-series consists
of 106 non-transient points. Horizontal axis is the coupling strength, vertical axis refers
to the node being analysed and the colours are the values of each informational measure.
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Given the symmetry of the topology chosen, the informational quantities are the

same between node 1 and any mediator nodes (2-9) as expected. However, when we

measure the flow of information from node 1 to node 10, it is surprising to observe that

the mutual information rate from node 1 to nodes 2 to 9 are higher than the one arriving

in node 10. This shows that the decay of information due to the path distance (shown

in the previous section) is also acting on this case. The amount or rate of information

arriving in the last node 10 is increased if the coupling is increased. However, an increase

in the coupling above σ = 0.2 causes the amount of transfer entropy rate from 1 to any

mediator to be smaller than the amount or rate arriving at the last node. This is again

evidence of the counter-intuitive phenomenon seen in the previous section that nodes not

directly connected can exchange larger rates of information, even larger than the amount

exchange between nodes that are mediating the information.

Instead, if we initially select the time-series of a ‘mediator’ (e.g. node 4) and attempt

to observe the relation of this node with the ‘cause’, the ‘effect’ and the other mediating

nodes, we obtain the results on Fig. 5.23. The result highlights how information between

nodes that are not connected can still be exchanged by a mediation process, which might

prevent one from doing topological inference based on informational quantities. It is in-

teresting to note that in this case the mutual information rate is highest with the other

mediators rather than with the ‘cause’ or ‘effect’ (where the direct link is). Also, the

transfer entropy rate in each direction correctly discerns the causing and the effect nodes,

and holds zero for the other mediators. Consequently, the directionality index correctly

indicates the causal flow. In general, both the transfer entropy rate and the mutual inform-

ation rate have increasing values with the coupling strength. However, a peak is observed

precisely at σ = 0.2 followed by a valley at σ = 0.25, which we can recall to be the

threshold between the low and high coupling modes on this system.
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Figure 5.23: Informational measures from node 4 to nodes i for a 10 node parallel
logistic network of diffusive coupling. All nodes have r = 4 and the time-series consists
of 106 non-transient points. Horizontal axis is the coupling strength, vertical axis refers
to the node being analysed and the colours are the values of each informational measure.
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For the CML coupling, the transfer entropy between the first node and the mediators

directly connected to it is greater or equal than with the last node, connected indirectly, as

Fig. 5.24 reveals, and as was observed in the diffusive coupling configuration. The results

on the figure also show that the mutual information is higher between the first node and the

directly connected node, increasing proportionally with the coupling strength. The trans-

fer entropy rate, however, does not necessarily increase with the coupling strength. This

time the transition between the low and high coupling behaviour occurs more smoothly at

σ ∈ [0.25,0.3]. Below this interval the transfer entropy rate is higher for the directly con-

nected node, and above this interval it is highest for the indirectly connected node of the

‘effects’. Note that the outcome for the CML coupling is equivalent to the one obtained

for the linear diffusive (Fig. 5.22).

Figure 5.24: Informational measures from node 1 to nodes i for a 10 node parallel
logistic network with CML coupling. All nodes have r = 4 and the time-series consists
of 106 non-transient points. Horizontal axis is the coupling strength, vertical axis refers
to the node being analysed and the colours are the values of each informational measure.
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The information measures between a mediator node (node 4) and the other nodes,

for a CML-coupled parallel system, is given on Fig. 5.25. Just as the case with the linear

diffusive coupling, the mutual information is higher with the other mediators, the transfer

entropy is greater with the directly connected nodes, and the direction of the causal flow

is correctly identified. The difference between the CML and the linear diffusive coupling

is that the peak in the mutual information rate and valey in transfer entropy rate at σ = 0.2

is slightly shifted to σ = 0.25. Also, the transfer entropy rate in the with the ‘effect’ node

(node 10) is smaller than in the linear diffusive case.

Figure 5.25: Informational measures from node 4 to nodes i for a 10 node parallel
logistic network with CML coupling. All nodes have r = 4 and the time-series consists
of 106 non-transient points. Horizontal axis is the coupling strength, vertical axis refers
to the node being analysed and the colours are the values of each informational measure.
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5.3.3 Directed tree network with maximum distance 3

The last topology to be considered is a tree network where: node 1 and node 2 are two

different ‘causes’, node 3 is a common mediator, node 4 is connected in serial to node

3 (hence nodes 3–4 constitute a channel like a chaotic communication link), node 5 and

node 6 are ‘effects’ connected to node 4. A diagram was presented at the end of Chapter

3, Fig. 3.18. All nodes are logistic r = 4 maps. With this topology we investigate what are

the consequences of, in one side, combining two information sources, and on the other,

splitting the information transmission into two ‘effect’ components.

For a diffusive coupling, we analyse the case of transmission of information from

‘cause’ node 1 to the other nodes, obtaining results on Fig. 5.26. The results correctly

show no information link with node 2, which is an independent ‘cause’. For the remaining

nodes the interpretation is similar to the serial network: the mutual information rate is

highest in the directly connected node (node 3) quickly dropping to zero for the others, and

the transfer entropy rate in the causal direction is highest for the directly connected node

on low coupling (σ ≤ 0.2) and for the indirectly connected nodes on higher couplings

(σ > 0.2).

Care must be taken when observing the T ERi→1 (opposite to the flow): the highest

value, which appear to occur for the two disconnected nodes (1 and 2) or for uncoupled

system (σ = 0) is actually the error arising from working with finite time-series, as de-

scribed in the beginning of the chapter. The fact the other values are lower only confirms

that T ERi→1 = 0, as expected. As in the serial case, for the highest coupling strengths the

transfer entropy rate in the causal direction (T ER1→i = 0, i > 2) remain significant until

the nodes of the effects. The results of this network being equivalent to the serial case

indicates that the presence of additional (possibly unknown) causes or effects does not

interfere with the measurement of causality between the (known) variables under invest-

igation.
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Figure 5.26: Informational measures from node 1 to nodes i for a 6 node distance-3 tree
logistic network of diffusive coupling. All nodes have r = 4 and the time-series consists
of 106 non-transient points. Horizontal axis is the coupling strength, vertical axis refers
to the node being analysed and the colours are the values of each informational measure.

If the coupling is of CML type, the results (Fig. 5.27) are similar to the linear diffus-

ive case. Node 2 is correctly indicated as unconnected to node 1, the mutual information

between node 1 and node 3 is high and decreases significantly for the other nodes. The

mutual information rate grows monotonically with the coupling strength, but the transfer

entropy rate does not, presenting a peak in σ = 0.2. A threshold is observed on σ = 0.3

where the transfer entropy rate is systematically higher for the indirectly connected nodes.

For the CML type the results are also similar to the serial connection, meaning that the

study of causality will not be impacted by lack of knowledge of all possible ‘cause’ or

‘effect’ physical events involved in a process. In special, it implies that we do not have to
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know all other seismic precursors to analyse if a candidate can be a precursor.

Figure 5.27: Informational measures from node 1 to nodes i for a 6 node distance-3 tree
logistic network with CML coupling. All nodes have r = 4 and the time-series consists
of 106 non-transient points. Horizontal axis is the coupling strength, vertical axis refers
to the node being analysed and the colours are the values of each informational measure.

There is one point of exclusivity about the CML type, which is that it enhances the

“multichannel" phenomenon: large levels of information can be transmitted for different

values of the coupling and for different pair of nodes. If the coupling has a particular

value, information is transmitted highly from node 1 to 4, for σ = 0.2, but if σ is 0.4,

TER is higher from node 1 to nodes 5 and 6.

5.3.3.1 A variation: periodic channel

A variation is proposed on the tree network with distance 3, consisting of turning the

chaotic channel formed by nodes 3–4 into a periodic channel. The main application is
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for communication systems with strongly amplitude damping factor2, where this channel

could be a carrier for the information from the chaotic nodes 1 and 2. However, it is

also relevant for our study on seismic precursors if it is considered that the strain/stress

changes on the Earth crust is an almost periodic process (mainly dictated by tides, which

is almost periodic). Therefore, all seismic precursor candidates considered to be mediated

by this link work as a small network with periodic channel.

Figure 5.28: Informational measures from node 1 to nodes i for a 6 node distance-
3 tree logistic network of linear diffusive coupling. ‘Cause’ nodes (1–2) and ‘effect’
nodes (5–6) have r = 4 and the mediating channel nodes (4–5) have r = 3.3 (period-2
solution). The time-series consists of 106 non-transient points. Horizontal axis is the
coupling strength, vertical axis refers to the node being analysed and the colours are the

values of each informational measure.

For simplicity, we have selected r = 3.3 for the logistic maps of the periodic channel

(nodes 3 and 4), which is a period-2 solution, and the chaotic r = 4 solution for the ‘cause’

(1 and 2) and ‘effect’ (5 and 6) nodes. The coupling type is linear diffusive. The results

2or to communication in neurosystems, when neurons behave periodically
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(Fig. 5.28) are similar from those obtained for the chaotic channel, with the only observed

difference of the values of mutual information rate being higher with periodic channel

than with chaotic. This is an initial indicator that the type of the mediating channel does

not influence the results significantly. The multichannel communication phenomenon

observed previously is maintained in a periodic channel. These results are expected, since

the periodic channel does not destroy the information, but only transforms it into a fractal

set where information is more complicated to be realized [129].

5.4 Discussion of results

In this chapter our theoretical approaches to study causality have been tested against a

number of numerically generated systems.

As expected, the numerical error increases with the length of the symbolic sequence

L and decreases with the number of time-series points available. We do not advise using

this method with fewer than 1000 points, once the errors for CaMI, transfer entropy and

their rates would be in the first decimal place, comparable to the expected values.

We notice in coupled logistic network systems that the mutual information increases

monotonically with the coupling strength, but the same is not true for the transfer entropy,

which is highly sensitive to the coupling type. The dependence of CaMI, transfer entropy

and mutual information with L typically present a linear portion for which their rates can

be calculated. The variation with the number of initial bins nb, however, is typically not

linear, although generally increasing. The CaMIR and the transfer entropy rate revealed

as effective in presenting the correct arrow of causation as the CaMI and transfer entropy,

with the advantage that it removes the arbitrary user selection of a symbolic length. The

mutual information rate in general follows the same characteristics as the mutual inform-

ation, hence also enabling substitution.

In all studied cases this directionality index indicated the correct direction of causa-

tion, but not necessarily is highest at the directly connected node.

On logistic networks, the mutual information rate is typically highest at the directly

connected node and increases with the coupling strength. The transfer entropy rate, can
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be highest in distant nodes, especially, but not exclusively, for higher coupling strengths.

An exception is when observing a mediator node in a parallel network. It usually has a

large amount of shared information with other mediators, despite they not being directly

connected.

An adequate way of distinguishing the parallel from the serial case is to observe

the mutual information rate in conjunction with the transfer entropy rate. If the transfer

entropy rate is zero the nodes are not connected. If the transfer entropy is significant, then

the mutual information rate should be observed, and typically it holds significant values

only if the link is direct. We expected network inference to be possible by this procedure.

The distance-3 tree networks have shown results similar to the serial network regard-

ing the flow from node 1 to nodes 3–6. This means that there is no significant implications

in the analysis of a causing system or precursor if there is the influence of another ‘cause’

or precursor which is unknown or which the time-series could not be acquired. No signi-

ficant changes are observed if the channel is periodic instead of chaotic, except for larger

mutual information rates between the nodes.

When the coupling strength is too high (σ > 0.3−0.4) a coupled logistic map may

start approaching synchronisation, as observed by the compression in the phase space

plots on Chapter 3 (Fig. 3.13). In this process, the time-series of directly connected nodes

become more similar, so the transfer entropy rate between them drops and the mutual

information rate increases. However, a node at a distance-3 is also under the effects of

the dynamics of the mediator, so the impact of the beginning of the synchronisation is

reduced, and the transfer entropy may remain high (or even increasing with σ ). Only

by observing the time-series without physical indication of the coupling strength of the

system at hand, this special case might lead to incorrect interpretations of two nodes being

in parallel when they can be two directly connected nodes with high σ .



Chapter 6

Causal analysis of earthquake

precursor candidates

In this chapter we apply the information theoretical methods defined on Chapter 4 to the

real-world seismic data. Four possibilities are considered:

• Tidal variations triggering large earthquakes,

• Variations of Gutenberg-Richter’s b-value preceding the occurrence of large earth-

quakes,

• Pre-seismic gravity changes,

• Preceding anomalous seismicity leading to new events (e.g. foreshocks, quies-

cence).

For the analysis of the precursor candidates we select data from the area around the

Japan trench. This fault system results from the Pacific tectonic plate moving under the

Okhotsk plate, and is selected for having one of the highest rates of large earthquakes ob-

served on the planet. More importantly, there are also IGETS gravity stations nearby. Of

particular interest is the Matsushiro station (MA), located about 60km from the Japanese

east coast, or 200km from the trench. The time-series from this station provides informa-

tion of locally observed astronomic tides, as the raw gravity signal is mainly composed by

them. Also, as discussed in Chapter 3, the gravity residuals can be obtained by removing
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the tides from the original signal. Hence a link between these residuals and the occurrence

of seismic phenomena can be also investigated (pre-seismic gravity changes).

The data about seismic occurrences is obtained from IRIS catalogue, specifying the

area of interest as the box of latitude range [34.98, 42.48] and longitude range [138.75,

147.02] (in decimal degrees). The time-series of the b-value is calculated from the seismic

occurrences data as previously described on Sec. 3.1.1. The gravity data is obtained

directly from the IGETS database1, where the CORMIN (minute-sampling, corrected for

local errors) data of MA station is selected. The period of analysis is 01 July 1997 to

30 June 2008, which corresponds to the interval of the available gravity data. A total of

321925 seismic events are registered in the period.

A typical qualitative definition to classify the events by magnitude considering large

earthquakes as those with Mw > 5.5 (122 cases in the period). However, we consider such

definition arbitrary, once it is possible that a precursor is associated with events with mag-

nitudes different from this threshold. The data itself should be able to indicate what is the

optimal threshold. We will find this on a case-by-case basis by means of performing the

calculation for different thresholds of precursor candidate anomaly and earthquake level

(selection different locations of the initial partition divisions), and choosing the combina-

tion which maximizes CaMI. However, we can only consider an event to be an anomaly

if it is at least two standard deviation distant from the average (probability of occurrence

smaller than 5% in a normal distribution). So, in the range of thresholds tested we start

with this physical constraint, and increase progressively the thresholds both in the pre-

cursory signal and in the seismicity indicator.

An outcome in favour or against the existence of the causal flow of information

between a precursor candidate and a seismicity behaviour does not unequivocally confirm

or reject such precursor candidate. Instead, it only provides an additional layer of analysis,

which could assist the arguments in favour or against the hypothesis in discussion. It

should be considered that it only refers to properties observed in the time-series, but the

(geo)physical theory for the precursor and laboratory testing are still essential. Also,

1http://isdc.gfz-potsdam.de/igets-data-base/

http://isdc.gfz-potsdam.de/igets-data-base/
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although here we test for only four candidates, there are other precursor candidates that

can be investigated with this method, but we do not explore mainly due to lack of data

access or insufficient data. Once long time-series of other precursor candidates become

easily available, these candidates can be equally tested.

To enable comparison, our sampling time is fixed at 1 day for all time-series, which

leads to 4018 data points over the whole period. Two uncorrelated uniformly distributed

random datasets with 4018 data points lead to a CaMI and transfer entropy for L = 2

in the order of 0.008 bits and a mutual information of the order of 0.002 bits with our

method. For L = 3, the CaMI and transfer entropy becomes of the order of 0.1 bit, and

of mutual information 0.01 bit for this uncorrelated uniform random system. For L = 4,

the values of CaMI and transfer entropy are of the order of 1 bit and of mutual informa-

tion of the order of 0.6 bits for such uncorrelated uniform random dataset. These values

can be interpreted as conservative error margins, or, most appropriately, the margins of

confidence to which we can distinguish a system from a uncorrelated random uniform

distributions. Other distributions are expected to lead to values smaller than this, hence

the interpretation as a conservative error margins. Further increasing L leads to values

(of these error margins) too large, so we will not consider here. For CaMIR and transfer

entropy rate calculated in the interval L ∈ [2,4], the numerical error for 4018 data points

is of the order of 0.5 bits/iteration and of mutual information rate of 0.03 bits/iteration.

As the error levels in CaMIR and transfer entropy rate are considered too large, given the

number of points available, we adopt CaMI and transfer entropy for this chapter. It would

be convenient to perform in future the analysis using the rates, once a time-series of 30

years of precise gravity data (or another measure of interest) becomes available, enabling

over 10000 points for the causal analysis.

The precursor candidates we are going to test in the following sections are summar-

ised by the diagram of Fig. 6.1. It will be evaluated the response delay to which observed

peaks in the informational measures occur, in an attempt to clarify the time-range to which

a precursor candidate may signal a seismic occurrence.
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Figure 6.1: Expected links between the earthquake precursor candidates investigated
and the earthquake occurrence.

6.1 Tidal triggering of earthquakes

The first hypothesis consists on the maximum push and recoil amplitudes of tides on Earth

acting as earthquake triggers. According to the view, the gravitational pull from the Moon

and Sun deforms the crust (directly or indirectly, through the weight of the changing ocean

levels), leading to strain and stress variations at geological faults that potentially surpass

rupture point.

We obtained the locally observed tides in the Japan area from the gravity time-series

of Matsushiro MA station. Tidal variations occur on a daily/twice-a-day basis, but the

amplitude can vary significantly, for example, at intervals of about 14-days (fortnightly

tides), corresponding to half the period of the orbit of the Moon, or with the arrival of

a storm surge changing the ocean levels (and influencing gravity). Higher and lower

envelopes were designed to fit the daily peak and valleys from the raw gravity data, and the

daily tidal amplitude was defined as the maximal difference of these envelope functions

in a day (Fig. 6.2. This observed tidal amplitude is considered the precursor candidate

signal.
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Figure 6.2: Illustration of method for obtaining the daily tidal amplitude for the gravity
signal.

The first question is whether high tidal amplitudes lead to high magnitude earth-

quakes, and, if so, what is the time-delay between a high tide and an earthquake. Our

method for determination of information quantities is applied to the observed tidal amp-

litudes and the time-series of the maximum earthquake magnitude observed in a day. A

delay between both time-series is considered, up to 30 days. Also, the magnitude defin-

ing a small or a large event and the tidal amplitude defining the threshold of a small and

a high tide are varied until finding the combination maximising CaMI. This combination

of thresholds is tidal amplitudes of 2.17µm/s2 and magnitude Mw5.6, with values of in-

formation measures varying with respect to delay as given in Fig. 6.3. Maximal values

are observed for delays 5 and 25 days.

Reminding that the CaMI and transfer entropy for uncorrelated uniform random dis-

tributions are of 0.008 bits for L = 2, 0.1 bit for L = 3 and 1 bit for L = 4. So all causal

information quantities shown on Fig. 6.3 are below this margin of confidence, i.e., in

principle consistent with zero. For mutual information, the margin is of the order of 0.002

bits for L = 2, 0.01 bit for L = 3 and 0.6 bit for L = 4. As the results for L = 2 are below

0.02 and for the other delays are below 0.01 bit, the mutual information is also consistent

with zero. The optimal thresholds leading to maximum CaMI correspond to the minimum

allowed threshold possibility (i.e., equal to the average plus 2 standard deviation).
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Figure 6.3: Information-theoretical values for the hypothesis that highest tidal amp-
litudes (X) induce earthquake events (Y). The optimal partition line of gravity tidal
amplitude is 2.17µm/s2 and maximum daily magnitude Mw = 5.6. The dashed lines
represent the confidence margins. If a confidence margin is not shown, its value is

beyond the scale of the plot.
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The pointwise informational quantities are given in Appendix C. In general the trans-

fer entropy and directionality index between the tidal amplitudes and the maximum daily

magnitude is zero. Few individual data points, though, may present higher pointwise mu-

tual information and pointwise transfer entropy, and interestingly they tend to fall in the

high daily magnitude range, which is desired. But from the available data is not possible

to identify these points as forming a subregion of the precursor domain. Without such

localisation, a precursor candidate cannot be considered for prediction.

Another possibility is that, instead of the large tides leading to singular large events,

the causality could be over a cumulative energy release (either one large event or many

smaller that in the sum represent a large release). Therefore, we consider the same ana-

lysis of the tidal amplitudes but now against the time-series of cumulative daily mag-

nitude. The optimal partition divisions are 2.37µm/s2 for the tidal amplitude (which

is above the mean plus two standard deviation) and ∑Mw = 102.2 for cumulative daily

amplitude (which is equal to the mean plus two standard deviation). Only magnitudes

Mw ≥ 3 are considered in the cumulative sum, once the catalogue might be incomplete

below this level (local events, beyond reach or sensitivity of instruments). For the optimal

thresholds, the results of the information quantities in function of the time-delay between

the time-series are shown on Fig. 6.4.

The maximum of the flow of causal information is observed in the delay of 10 days.

The results of the causal information quantities (CaMI and transfer entropy) are smaller

than the comparison with the uncorrelated uniformly distributed random system (0.008

bits for L = 2, 0.1 bit for L = 3, 1 bit for L = 4), hence consistent, in principle, with zero.

However, the results for the mutual information are of the same level as the error (0.002

bits for L = 2, 0.01 bits for L = 3), apart for L = 4 due to insufficient data (error 0.6 bits).

The possibility of flow of information between these two variables is not discarded, but it

is not possible to confirm with the amount of available data. The pointwise information

measures for this system, displayed in Appendix C, clarifies that the high mutual inform-

ation contributors are associated with the high tide (mostly above 2.4µm/s2) and high

cumulative magnitude (above ∑Mw = 100), which is a desired behaviour for a precursor
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Figure 6.4: Information-theoretical values for the hypothesis that highest tidal amp-
litudes (X) induce high cumulative magnitudes (Y). The optimal partition line of gravity
tidal amplitude is 2.37µm/s2 and maximum cumulative magnitude ∑Mw = 102.2. The
dashed lines represent the confidence margins. If a confidence margin is not shown, its

value is beyond the scale of the plot.
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candidate. However, this behaviour does not appear in the pointwise transfer entropy, so

this common information does not appear to have a causal flow origin.

The final possibility considered is whether high tidal amplitudes could trigger a large

number of seismic events, as opposed to a specific relation with the magnitude. In this

case, it could be that the almost periodic stress changes applied to the fault system do

not necessarily lead to the rupture of the larger events, but to a great number of smaller

earthquakes, or to a cascade of one large earthquake triggering several smaller events in

a short timescale. Hence, we have applied the same procedure for the time-series of the

gravity tidal amplitudes against the time-series of the daily seismicity rate. The daily

seismicity rate is here defined as the number of earthquakes catalogued in the area around

the Japan trench during a 24h interval, considering only events with magnitude Mw ≥ 3.

The optimal partition is found at tidal amplitude of 2.37µm/s2 (above the average plus

two standard deviation) and seismicity rate of 27 events/day (equal to the average plus

two standard deviation). The results are displayed on Fig. 6.5.

The delay leading to maximal causal mutual information is 9 days. The results are

very similar to the case of cumulative amplitudes. Once again, the causal informational

quantities are below the margins from uncorrelated uniformly distributed random sys-

tems, so consistent with zero. For L=2, CaMI, transfer entropy are below the 0.008 bit

line and are in the second decimal place for L ∈ [3,4] (hence below 0.1 and 1 bit con-

fidence intervals). At the peak the mutual information, observed at delay 8–9 days, it

equals the error level of 0.002 bit for L=2 and almost reach 0.01 bit for L=3. It remains

significantly below the confidence interval of 0.6 bit for L=4. With more data points the

confidence interval which enables discerning a system from a uncorrelated random setup

could be reduced and these quantities determined more precisely. The pointwise inform-

ation measures reveal, just as in the case of cumulative magnitude, a localisation in the

high pointwise mutual information points in the region of high tidal amplitudes and high

seismicity rate. The case for pointwise transfer entropy (PTE) is not so clear, though,

apparently forming a region of high PTE in the mean tidal amplitudes and high seismicity

rate for L=2, but spreading for larger L. With more data points, these structures would be
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Figure 6.5: Information-theoretical values for the hypothesis that highest tidal amp-
litudes (X) induce high seismicity rate (Y). The optimal partition line of gravity tidal
amplitude is 2.37µm/s2 and seismicity rate 27 events/day. The dashed lines represent
the confidence margins. If a confidence margin is not shown, its value is beyond the

scale of the plot.
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more clear.

In summary, the hypothesis of tidal triggering of earthquakes is not verified above

the confidence levels from uncorrelated uniformly distributed random systems using our

method, for the Japanese trench area in the period from 01 July 1997 to 30 June 2008.

However, there are suggestions of a peak of mutual information for the link of observed

high gravity tidal amplitudes with high cumulative daily magnitude and high seismicity

rate, particularly with a delay of 8–10 days between the signals. This deserves to be

further explored once more data is available.

6.2 Gutenberg-Richter’s b-value temporal variations

Laboratory experiments on rock mechanics suggest that the Gutenberg-Richter b-value

fluctuates before a rupture: for a elastic rupture a sharp decrease occurs before, while

for an inelastic rupture a brief peak occurs prior to the decrease [80]. Similar behaviour

is expected to occur with real-world data preceding large earthquakes, as these rupture

models were designed to approach seismic behaviour. A time-series of the b-value is

computed from the IRIS seismic catalogue following procedure on Chapter 3 (Sec. 3.1.1).

The selected time-window for the calculation of each data point of b-value is 2 weeks,

which is a trade-off enabling the smallest possible window but still allowing a number

of earthquake events above 50 at each time, so the error in the computed b-values is 0.1.

As in the previous case, the sampling rate in all time-series is 1 day. The time-series of

b-values is translated into absolute deviations from the average, so both the possibilities

of sharp increase and dip can be considered.

We begin by investigating the causal link between b-value anomalies and maximum

daily magnitude (single large events). The optimal threshold found is b-value of 0.32 and

maximum daily magnitude of 5.6 (both of which equal to the mean plus two standard

deviation). The results of the information measures in function of the time-delay between

the time-series are given in Fig. 6.6.

The maximum CaMI is observed at a delay of 17 days. Reminding that for an un-

correlated uniformly distributed system the values of CaMI and transfer entropy are of
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Figure 6.6: Information-theoretical values for the hypothesis that b-value anomalies
(X) are precursors of earthquake events of high magnitude (Y). The optimal partition
line of b-value is 0.32 and of maximum daily magnitude is Mw = 5.6. The dashed
lines represent the confidence margins. If a confidence margin is not shown, its value is

beyond the scale of the plot.
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0.008 bits for L=2, 0.1 bit for L=3 and 1 bit for L=4, all the values shown of Fig. 6.6 for

causal transfer of information are below this margin, hence effectively a null result as it is

not possible to discern it from an uncorrelated random case. For mutual information, the

confidence interval is 0.002 bits for L=2, 0.01 bit for L=3 and 0.6 bit for L=4. The mutual

information for L=2 is above this confidence interval for delays of 0–3 days and 13 days.

For longer symbolic sequences the values are always below these margins. The observed

negative directionality index indicates that the flow of information is more significant in

the direction of the maximum earthquake magnitude inducing b-value changes than the

other way. This is not unexpected, as the b-value is derived from seismicity patterns. In

Appendix C we have included the pointwise information measures for the optimal par-

tition and delay, but the values are consistently zero for all points except few randomly

scattered. We observe no indication of a possible precursory behaviour of b-value tem-

poral anomalies with the maximal daily magnitude in this dataset.

The second hypothesis consists of assessing the b-value anomalies as a possible pre-

cursor of daily cumulative seismic magnitude. As previously mentioned, only magnitudes

Mw ≥ 3 are considered in the cumulative sum, once the catalogue might be incomplete

below this level. The optimal initial partition leading to largest CaMI is found at b-value

anomaly of 0.35 and cumulative magnitude of ∑i M(i)= 102.2. Results of the information

measures for varying time-delay are shown in Fig. 6.7.

The maximum of CaMI is observed for delay of 10 days. The values of CaMI and

transfer entropy remain significantly lower than the error bar for all symbolic sequence

lengths L (0.008 bits for L=2, 0.1 bit for L=3, 1 bit for L=4). The same occurs for

mutual information (errors of 0.002 bits for L=2, 0.01 bit for L=3, 0.6 bit for L=4). The

directionality index this time is mostly positive (indicating information flow from the b-

value to the cumulative daily magnitude), however its value is negligible when accounting

for error. In Appendix C the pointwise information measures are presented for the optimal

partition, showing that the peak of mutual information is given by a group of only 5 data

points and of transfer entropy for another 3 points. In the case of mutual information

there is a suggestion of a higher pointwise mutual information region in the b-value high
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Figure 6.7: Information-theoretical values for the hypothesis that b-value anomalies
(X) are precursors of high cumulative magnitudes (Y). The optimal partition line of
b-value anomalies is 0.35 and maximum cumulative magnitude ∑Mw = 102.2. The
dashed lines represent the confidence margins. If a confidence margin is not shown, its

value is beyond the scale of the plot.
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anomaly and high cumulative daily magnitude quadrant, but 5 points are insufficient to

reach a conclusion. For pointwise transfer entropy (PTE), though, the location of the high

PTE points in the state-space appear to be arbitrary. There is still insufficient evidence to

support or discard this precursory behaviour, mainly due to the lack of data points (higher

points imply smaller errors).

The last hypothesis consists of the b-values anomalies being related to occurrence

of higher daily seismicity rate, i.e. an elevated number of earthquake events as opposed

to a specific relation with their magnitude. The optimal partition is b-value anomaly of

0.32 and seismicity rate of 27 events/day. Results of the information measures for varying

time-delay between the time-series are shown in Fig. 6.8.

The peak of causal mutual information is observed on 23 days of delay. The causal

mutual information and transfer entropy are below error levels, as they are below 0.008

bits for L=2 and 0.1 for L=3–4. The mutual information almost reach the error level of

0.002 bits for L=2 in the delay interval of 23–27 days. However, it is significantly lower

than the error levels of 0.01 bit for larger L. Hence, it could not be observed an associ-

ation between b-value anomalies and high daily seismicity rate above the error levels with

this dataset. A pointwise analysis (with the pointwise mutual information and pointwise

transfer entropy) also leads to null results. These can be seen in Appendix C.

In summary, the hypothesis of temporal b-value anomalies as precursor of earth-

quakes is not yet verified above the error margins (from the comparison with uncorrelated

uniformly distributed random system) using our method on the Japanese trench area for

the period 01 July 1997 to 30 June 2008. More data 2 can support the future reanalysis,

by reducing the error levels, particularly with respect to a possible relation of b-value

anomalies with cumulative daily magnitudes.

2E.g. 30 years, enabling over 10000 time-series points
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Figure 6.8: Information-theoretical values for the hypothesis that the b-value anomalies
(X) are precursors of high seismicity rate (Y). The optimal partition line of b-value
anomalies is 0.32 and seismicity rate 27 events/day. The dashed lines represent the
confidence margins. If a confidence margin is not shown, its value is beyond the scale

of the plot.
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6.3 Pre-seismic gravity variations

As the stress accumulates in the fault area, the rock is deformed, increasing density. In

principle this lead to small gravity variations detectable at the surface. According to the

hypothesis, as the stress builds up, so should the gravity anomaly. However this anomaly

is expected to be smaller than the tidal variations, hence this have to be removed from the

raw gravity signal, producing a time-series of gravity residuals. Just like in the previous

case, anomalies are considered as deviations from the mean with threshold above two

standard deviation. The original time-series consisted from the 1 minute-sampled raw

gravity data from Matsushiro station, which was treated to remove tides and atmospher-

ic/ocean effects, and re-sampled to 1-day sampling time, where each data point consists

of the largest anomaly of the day.

The first hypothesis considered is whether the gravity residuals are associated to the

occurrence of future large earthquakes, and, if so, what is the expected time delay. The

optimal threshold found for defining a gravity residual anomaly is 23.84nm/s2, and for the

maximum daily magnitude is Mw5.6 (both of which equal to the average plus two standard

deviation). Fig. 6.9 shows the result of the information measures for this combination and

varying delay between the time-series.

The maximum of CaMI is found at the delay of 8 days. The CaMI from the gravity

residuals to the earthquake occurrence is slightly higher than the error level of 0.008 bits

for L=2 in the delays 8–11 days. The mutual information is higher than the error level

of 0.002 bit for L=2 for delay 9–12 and reaches the error level of 0.1 bit for L=3. For

higher L the values are below the error levels. The values of transfer entropy are below

error levels. Increasing the amount of data available would reduce the error levels, which

could strongly support this first indications of a possible association with delay of around

10 days. Unfortunately, this result is not further assisted by the pointwise information

measures, which exhibit no clear pattern (details on Appendix C)

The second possibility considered is if there are indications of the gravity residuals

as precursors of a cumulative daily magnitude, and what is the delay observed between

the anomaly in the gravity and occurrence of the peak in seismic energy release. The
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Figure 6.9: Information-theoretical values for the hypothesis that gravity residual an-
omalies (X) are precursors of earthquake events of high magnitude (Y). The optimal
partition line of gravity residuals is 0.32nm/s2 and of maximum daily magnitude is
Mw = 5.6. The dashed lines represent the confidence margins. If a confidence margin

is not shown, its value is beyond the scale of the plot.



6.3. PRE-SEISMIC GRAVITY VARIATIONS 144

Figure 6.10: Information-theoretical values for the hypothesis that gravity residual
anomalies (X) are precursors of high cumulative daily magnitudes (Y). The optimal
partition line of gravity residuals is 23.84nm/s2 and of cumulative daily magnitude is
∑Mw = 102.2. The dashed lines represent the confidence margins. If a confidence

margin is not shown, its value is beyond the scale of the plot.

optimal threshold found is gravity residuals of 23.84 nm/s2 and cumulative magnitude of

∑Mw = 102.2. The results of the information measures, in function of the delay between

the time-series, are given in Fig. 6.10.

The delay with highest CaMI is 12 days. The value of CaMI in the direction of the

precursor candidate to the cumulative magnitude is larger than the error level of 0.008

bits for L = 2 and delay of 11–13 days. The mutual information is larger than the error

level of 0.002 bit at L = 2 and larger than the error level of 0.01 bit for L = 3 for delays of

10–15 days. For higher L the error levels are greater than the value obtained. All values of
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transfer entropy are below error levels. This result is also a promising first indicator of a

possible flow of information from the gravity residuals to the cumulative daily magnitude

in the system studied. Furthermore, it is supported by the pointwise information quantit-

ies, which apparently exhibit localisation of both high pointwise mutual information and

pointwise transfer entropy in the high gravity residual anomaly - high cumulative daily

magnitude combination. However, these can only be made clear with further data points,

so the preliminary pointwise results are displayed on Appendix C.

The last possibility considered is a link between the gravity residual anomalies and

high seismicity rate. The optimal threshold found is gravity residual of 23.84nm/s2 (which

is equal to the average plus two standard deviation) and seismicity rate of 31 events/day

(which is above the average plus two standard deviation). Fig. 6.11 shows the results of

the information measures for varying delay applied between the time-series.

The delay reaching the maximum CaMI is 11 days. Once more, CaMI is above

the error level (from comparison with an uncorrelated uniformly distributed system) for

L=2 and mutual information is above the error level for L=2 and L=3 in delay ranges

within the interval of 10–15 days. Larger values of L lead to error bars superior to the

information values obtained and all the values of transfer entropy are below the current

error levels. As in the previous case, these results are promising first indicators that the

gravity residual anomalies might be associated to high seismicity rate, with a delay of

about 11 days between the gravity anomaly and the occurrence of high seismicity. As

in the previous case, this is further supported by the concentration of the points of high

pointwise mutual information and high pointwise transfer entropy in the high gravity

anomaly - high seismicity area, which can be seen in Appendix C. However, in this the

definition of the region is less evident than in the case of cumulative daily magnitude.

More data points, when available, would support this analysis and also reduce the error

levels.
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Figure 6.11: Information-theoretical values for the hypothesis that gravity residual
anomalies (X) are precursors of high seismicity rate (Y). The optimal partition line of
gravity residuals is 23.84nm/s2 and of seismicity rate is 31 events/day. The dashed
lines represent the confidence margins. If a confidence margin is not shown, its value is

beyond the scale of the plot.
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6.4 Preceding seismicity leading to new events

Finally, we consider other two possible scenarios for preceding seismicity being associ-

ated to new events. The first scenario is for a high cumulative magnitude before a large

event. This could be the case of a foreshock behaviour – either by a single or a compos-

ition of events. The second scenario is for a low seismic rate before a large event. This

attempts to model a type of seismic quiescence.

For the first case, we found the optimal thresholds to be ∑Mw = 140 for the cumu-

lative daily magnitude (higher than the average plus two standard deviation) and Mw5.6

for the maximal daily magnitude. The values of the information quantities in function of

the time-delay applied between the time-series are shown in Fig. 6.12.

In the first 5 days the relation between cumulative and maximal magnitudes is a

direct consequence of the definition of these quantities and the aftershock models (e.g.

ETAS). Our primary interest is for larger delays. The maximum CaMI is then found at

the delay of 11 days. For an interval of 11–15 days, CaMI is higher than the error level

(from the comparison with uncorrelated uniformly distributed system) of 0.008 bits for

L=2. Also, for delay of 14 days, the mutual information is above the error levels of 0.002

bits for L=2 and 0.01 bits for L=3. The transfer entropy is below the error levels in all

cases. Pointwise information measures (see Appendix C) reveal that the main contribution

to the causal mutual information and the transfer entropy come from the high values of

cumulative magnitude. Hence, this is an association worth to be further analysed with

more data in future.

The second case, of an unusually low seismicity rate linking to a future occurrence

of a large earthquake event, has optimal partition of 2 events/day for the seismicity rate

and Mw5.6 for the maximum daily magnitude. The results of the information measures

for varying delay between the time-series is shown in Fig. 6.13.

The most relevant maxima of CaMI (shown for all L) is on delay of 23 days. How-

ever, all the information quantities are smaller than the error levels, at all delay times. The

directionality index, slightly negative, with value very close to zero, is suggestive that this
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Figure 6.12: Information-theoretical values for the hypothesis that high cumulative
daily magnitude (X) are precursors of earthquake events of high magnitude (Y). The
optimal partition line of cumulative daily magnitude is ∑Mw = 140 and of maximum
daily magnitude is Mw = 5.6. The dashed lines represent the confidence margins. If a

confidence margin is not shown, its value is beyond the scale of the plot.
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Figure 6.13: Information-theoretical values for the hypothesis that low seismicity rate
(X) are precursors of earthquake events of high magnitude (Y). The optimal partition
line of the seismicity rate is 2 events/day and of maximum daily magnitude is Mw = 5.6.
The dashed lines represent the confidence margins. If a confidence margin is not shown,

its value is beyond the scale of the plot.
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precursor candidate is not verified in the dataset, as there is no significant flow of inform-

ation from the seismicity rate to the maximum magnitude. This is further supported by

the pointwise information having no visually distinguishable structures when plotted in

the phase-space (compare Appendix C with the causal bubble features of Figs. 5.9, 5.10,

5.14 and 5.15).

6.5 Summary
Of the possibilities tested, the most promising precursor candidates are summarised in

Fig. 6.14. A future analysis with more data points will provide more supporting evidence

or discard some of these links.

Figure 6.14: Diagram summarising the most promising precursor candidates after in-
formation analysis



Chapter 7

Conclusions

7.1 Review of context, objective and findings
The most fundamental question in Seismology is: “Can earthquakes be predicted? If so,

how?”. On the other hand, perhaps the most essential epistemic question to Physics is the

definition of causation: “What is a cause? What is an effect? How to distinguish them

from the observation of a physical system?”. In this work, we have combined the two

areas, by developing a method for calculation of the causal flow of information between

two systems. This method uses the observed time-series of the physical variables to them

distinguish the variable sending information from the variable receiving information.

There are several geophysical variables regarded as candidates of earthquake pre-

cursors. This method has the potential of supporting their analysis by indicating the pres-

ence of a flow of information from the precursor candidate to the occurrence of seismicity.

This is further improved by considering delayed effects, i.e. also enabling to determine

the amount of time in advance the precursor expressed information about the seismicity

occurrence.

We have applied the method first for coupled logistic systems, as a test-bench, re-

trieving expected results and discovering new ones, such as the effects on logistic net-

works. We then proceed to apply to 11 years of data of seismicity occurrence and pre-

cursor candidates on the Japan trench area. This was not intended to confirm or discard

any precursor candidate, but only to present a preliminary view of how the method can be

used to earthquake prediction problems.
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The method revealed the correct direction of causality for both coupled systems and

for networks. In general, it is observed a proportionality of the mutual information or

mutual information rate value with the coupling strength, and a decay of the information

measures with the amplitude of an applied dynamic noise. The transfer entropy rate and

the directionality index might correctly indicate the direction of causation, but, on special

circumstances (particularly high coupling), they might not be strongest to the neighbour

node, but to a node on distance 2 or distance 3. The mutual information rate, however, is

strongest to the neighbour node, usually. The exception is when there are other nodes in

parallel, sharing significant mutual information with the analysed node, but not directly

connected (both are effects from the same cause). In summary, effective inference of

the network structure requires simultaneous analysis of the mutual information or mutual

information rate and of the transfer entropy or transfer entropy rate.

At the present moment the information quantities obtained for the geophysical sys-

tems considered are of the same levels of our conservative margins of confidence, from

the application to random time-series with the same number of points. Hence, more data

is still required before reaching a definite conclusion. We roughly estimate that 30 years

of continuous data should suffice for clarifying the contributions of some precursor can-

didates that appear to share or transmit information.

7.2 Open questions

The analysis of the method applied to logistic networks opened up the question of why,

under special conditions, the transfer entropy is higher to a node more distant than the

immediate neighbour. This has practical consequences, as the transfer entropy is applied

for inference of network structures from time-series observations. If the system happens

to be in these cases, typically associated to high coupling, then the reconstruction might

not reflect the real network topology. For systems like the brain, though, this is a property

expected to be found, as regions not directly connected can become strongly functionally

connected, forming a channel of communication.

An additional question for future exploration is how the structures of the pointwise
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information measures change as the coupling strength is varied. In particular, this could

clarify the peak of transfer entropy at coupling strength σ = 0.2 with the CML coupling.

Regarding the application to seismic data, there are initial indications of earthquakes

being causally connected to several percursors. However, an error analysis approach

based on uniform random time-series prevents us from rigorously stating that indeed we

have found the main precursors. This is not an issue, as the primary goal is not to confirm

any hypothesis but to test how the method could be applied to earthquake prediction. The

cases where an initial indicator of information sharing and possible causal information

transmission between precursor candidates and seismicity occurrence are:

• Tidal amplitudes and cumulative daily magnitude, on a delay of 5–13 days

• Tidal amplitudes and seismicity rate, on a delay of 5–10 days

• Gravity residuals and high magnitude events, on a delay of 8–11 days

• Gravity residuals and cumulative daily magnitude, on a delay of 11–13 days

• Gravity residuals and seismicity rate, on a delay of 10–15 days

• High cumulative daily magnitude and future high magnitude events, on a delay of

11–15 days

It is not yet clear why all the candidates are connected in a similar delay interval

of 5–15 days. These candidates deserve to be further explored as soon as more data is

available. With more data points, not only the error levels decrease, but also a clearer

analysis of pointwise informational measures becomes possible. The number of points

available (4018) does not allow for a definition of spatial patterns of these pointwise

quantities in the phase space of the data points. Preliminary results where left for the

Appendix C.

7.3 Applications to other fields of knowledge
The method presented in this work can be applied to any time-series (as long as the

sampling rate is constant and gaps are filled) or sequence of ordered events. It means



7.3. APPLICATIONS TO OTHER FIELDS OF KNOWLEDGE 154

that it can also support analysis of:

• Financial systems, by identifying the key variables influencing a market,

• Neuroscience, by identifying the transmission of information in a neuron network

or, in the macroscale, the overall flow of information between different areas of the

brain,

• Genetics, by identifying how different regions of the DNA/RNA sequencing might

be causally related,

• Social sciences, by analysing the flow of information between quantifiable social,

demographic and environmental factors, supporting hypothesis of links between

different social variables,

• Computational linguistics, by enabling the analysis of how words are causally as-

sociated in human language, so to improve natural language computer models,

• Atmospheric sciences and oceanography, by identifying the flow of information

between different variables, particularly in the occurrence of extreme events,

• Ecology, by identifying, from collected data such as time-series of fish population,

the likely trophic chain and relation with physical environment factors in a ecosys-

tem.
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Appendix A

Comment on definitions of disasters and

media representation

Disasters, hazards, risks, vulnerability and susceptibility are terms used interchangeably

in common language, but which hold different meanings in the field of Disaster Studies.

Being it an interdisciplinary area, to appropriately make this distinction is of vital import-

ance, so to appropriately identify the contribution from each actor given its competence.

Misidentification of the concepts and roles lead to an understanding of the field limited to

the common sense and to inadequate strategies. A typical example is of technical fields

imposing solutions for the “social part” without regard for the social composition, social

norms, interpretations of a message, relationship between different social groups and state

actors, and different levels of damaging depending on the societal structure.

The coordination of the disaster operational aspects is typically done by the Civil De-

fence or Protection, which is the institution or set of institutions responsible for crisis man-

agement, emergency planning and safeguarding of the civil society. It can be a permanent

institution, such as the Brazilian “Proteção e Defesa Civil”, the German “Technisches Hil-

fswerk” (THW) and the US Federal Emergency Management Agency (FEMA), or called

on time, such as in the UK, where the Civil Protection is a shared responsibility of many

actors (Civil Contingencies Secretariat, NHS, Police, Firefighters, Environment Agency)

but a central crisis cabinet can be defined in midst of an event.

Although there is no consensus on the specific definition of a disaster, it is commonly
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accepted to be consisted of a tragic, disruptive, social event [130]. Furthermore, a disaster

can only be referred as such after its occurrence. A hazard, on the other hand, refers to

a physical event with potential to cause damage. Note that a hazard can have no social

consequences, therefore, it is possible to have a hazard without a disaster. It is the case,

for example, of the occurrence of large earthquakes in low-populated areas. The hazard

level may be considerable, as measured by parameters such as the earthquake magnitude

or else, but likely to have no disaster consequences. Additionally, a hazard is also only

defined when the physical event has already started to occur. On contrary, when referring

to the probability of future occurrence of a physical event, the quantity being analysed

is the risk. Depending on the case, a different set of tools might be employed for risk

analysis.

The distinction of hazard, which is in essence a physical phenomena, and disaster,

which is a social crisis, is essential to avoid conflicts between different technical operators

and scientific areas. The body of this thesis concerns with the study of hazards, more spe-

cifically the seismic hazard, using tools and definitions from Physics and Geophysics. It

does not analyse disaster cases (involving in-depth social analysis) neither does it evaluate

risk scenarios (which involves forecasting models). The focus, instead, is in improving

the state-of-art knowledge on the seismic hazard and its relations with other elements

(precursory signal candidates). This may support both the technical actors concerned

with the disasters to make informed choices by associating this new knowledge with their

own expertise of the societal structure, and the technical actors engaged in risk analysis

to redesign their forecasting analysis tools and improve potential differential damaging

scenarios.

The last distinction is between vulnerability and susceptibility. Susceptibility is the

exposition of the subject to a threat. For example, an individual is susceptible to the

earthquake risk if he is in an earthquake-prone area. This condition alone is insufficient to

render this individual vulnerable, as he can be, for example, in a well designed building,

able to resist to the strongest ground motions. Hence, vulnerability, although it is term

(like disaster) of difficult consensual definition [131], conveys this idea of the state of
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an individual in face of a threat (either a risk or an incoming hazard). When comparing

vulnerability and susceptibility, also the general principle of resilience arises, as it relates

to this ability of the individuals to resist to a hazard or cope with its adverse effects.

Three paradigms have historically developed to interpret disasters [131]: disaster as

a war, disaster as social vulnerability and disaster as uncertainty. The first consists in com-

paring the hazard as an enemy, threatening the citizens. This is typically the first approach

implemented by Civil Defence systems, supported by media language (e.g. “earthquake

kills”) and imagery. The consequence is militarised and/or technocrat civil defence insti-

tutions, which might not always understand the intricacies of the structure of civil society,

especially in cases requiring long-term solution [132]. An example of such failure in un-

derstanding the civil society is in the management of public sheltering for the affected,

not always that temporary, where the logistics of barracks is strictly applied, not rarely

splitting families and controlling (or not allowing) private spaces [133].

The second paradigm, disaster as social vulnerability, spread from the late 1970’s

as a criticism of the first approach. In this view, disaster is not simply an event, with

defined start and end chronological times, but a social process that began with the social

mechanisms producing the differential vulnerability in a societal structure. This enables

the construction of a Civil Defence system operated by civilians, and more engaged with

sectors such as Civil Service and Health institutions. However, it is not perfect: first

it is difficult, especially for newcomers in the field, to abandon the notion of a causing

‘agent’ (hazard), and second, it is not simple to measure what is vulnerability, as it can

be different for different societal background. Moreover, if it is interpreted only half-way

(disaster=vulnerability without accounting for the historical construction of vulnerabil-

ity), it is simple to fall in the traps of victim-blaming. In this case, affected groups are

blamed for not being cautious enough, when the reasons that lead to the vulnerability

in first place (social inequality etc) remain unquestioned. This mistake occurs when the

vulnerability is seen as a state (fixed in time) instead of a process (built over history) [15].

The third paradigm, developed from the late 1980’s, of disaster as uncertainty, fo-

cuses in the problems of evaluation, communication and institutional action in the modern
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world. This approach does not constitute an opposition to the other two, like the previous

case. In this view, the disaster is the rupture of the common social norm: suddenly there

is the presence of a danger threatening the built environment and the citizens on it, the

very complexity of society sends no or several conflicting messages of actions to be taken

or not, and the individuals lose their common parameters to understand and interact with

the environment. This approach brings the Civil Defence planning closer to the sciences

of complexity, particularly, Architecture, Communications and Information Technology,

Sociology, and Physics of Complex Systems.

It is a common misconception that the disaster scenario consists of affected indi-

viduals and emergency services working in cooperation to save them. This conception is

not rarely amplified by the discourse of emergency personnel as “heroes” by government

sectors and media outlets. The real scenario is more complex, defined by a field of action

[134] where numerous actors not only fulfil their role but dispute for position, visibility,

recognition, status, and, in ultimate instance, power. Not only collaboration occurs at the

scene, but also conflicts, particularly attribution of responsibilities of damages and other

negative effects between the actors. The media, expressed by the press vehicles, is in

charge of observing the scenario and the disputes in the field and providing an informed

panorama for the public opinion. However, the media itself is an element in the field, and

must be assessed if it is, intentionally or unintentionally, privileging the voice of certain

actors over others, or hiding the full picture.

As an illustration, we have analysed the portrait of the 2015-2016 UK flooding crisis

case by the BBC News online reports [16], revealing at least 67 types of social actors

involved in the disaster (Fig. A.1). These form complex relations of cohesion but also

of conflict or concern (neutral), such as shown on Fig. A.2. A complete perspective of

all the represented social relations is given in Fig. A.3. These reveal both the complexity

of the field of action of a disaster and the ability of this media outlet in presenting the

panorama. However, regarding the balance of voice given to individual actors, expressed

by the direct/reported speech ratio, affected group members had a given voice ratio of

30%, whereas the government and emergency services had a voice ratio of around 50%.
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Figure A.1: Classification of the identified social actors in a sample of 51 news reports
of the 2015-2016 UK flooding crisis. “Country” is a shorthand descriptor for the de-
volved administrations: Scotland, Wales and Northern Ireland. Figure published by the

author in [16]



A. COMMENT ON DEFINITIONS OF DISASTERS AND MEDIA REPRESENTATION 171

Figure A.2: Networks of social interactions for the actors involved in the 2015-2016
UK flooding crisis, according to sample of 51 news reports from BBC News. Figure

published by the author in [16].
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Figure A.3: Detailed network of social interactions containing the 67 social actors
identified in the 2015-2016 UK flooding crisis, according to sample of 51 news reports

from BBC News. Figure published by the author in [16].



Appendix B

Steps in the development of a Cold

Atom Gravimeter

Gravimeters are precise accelerometers, tailored to measure the absolute value or the

variations in the value of Earth’s gravity acceleration. On Chapter 2 (Sec. 2.3.2) we have

introduced the optical and the superconductor gravimeters. With the advent of techniques

in laser cooling and guidance of atoms, there have been proposals for designs of gravi-

meters based on matter-wave interferometry [135–137]. Here we outline the main steps

in the development of an atom-interferometry gravimeter, which was part of the research

activities in the first year of the research programme. Currently, the main virtue of these

proposals is the potential of such devices having high accuracy whilst remaining relatively

compact, practical for field operations and possible satellite missions.

Before an atom-interferometry experiment takes place it is necessary to prepare and

trap a cold atom sample. In this case, there is a high-vacuum chamber with an entry for

the source of the atoms being used and windows or fibre-optical entries for the application

of laser beams. Typical choices of atoms are neutral Rubidium and Strontium, as com-

mercial glass cells with Sr/Rb vapour cells are available as atomic sources for operation at

environment temperature (no need for significant heating to create a gas), these elements

exhibit hyperfine structure (key for trapping), and they have strong spectral lines in the

visible to near-IR bands (where it is easier to find/build precise lasers).

Once an atomic sample has been released into the chamber, six low-intensity laser
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beams frequency-locked just below the peak of a strong and thin spectral line of the

element are applied in the area of the sample, forming standing waves in each of the

three Cartesian directions. This allows for a cooling mechanism referred as 3D optical

molasses. When an atom thermally moves in any direction, the Doppler-shifted frequency

of the counter-propagating laser beam matches with the atom spectral line, which under-

goes a cycle of photon absorption and re-emission in a random direction (spontaneous

emission), leading to a net damping force (light pressure force).

If the beams form standing waves and the beams have opposing circularly polarisa-

tion, a space-dependant potential pattern is created, making the atoms suddenly shift from

“favourable” to “unfavourable” energy state as move from one area to another, release en-

ergy in the process. This additional process is the Sisyphus cooling. Further applying an

asymmetric magnetic field, such as a quadrupole configuration (easily created by two cir-

cular coils with current in opposite directions), the atom spectral lines also shift slightly

depending on the spatial location, and again a light pressure force makes them converge

to the central point (atom trapping). A detailed theoretical account for these cooling and

trapping processes can found in [138] and a simple description of how to build a device

with low cost materials is presented in [139]. The result is a trapped vapour of Rubidium

or Calcium atoms cooled down to µK level. Mechanisms of selection of the coldest atoms

(evaporative cooling) can also be applied for further cooling to nK temperatures, reaching

phase-transition to Bose-Einstein condensation, but this is not strictly needed.

After obtaining the cold atomic sample and switching off the trap, the application

of additional laser pulses can be used to transition a fraction of the atomic sample into a

excited state and vice-versa. This can effectively act as atom-optical components (beam-

splitter, mirrors). If the process of choice is a stimulated Raman transition (two-photon

absorption), a pulse of time T = π/2Ω (called a π/2-pulse, Ω is the Rabi frequency

of the atom-light coupling) creates a superposition of states |energy,momentum〉, |1, p〉

(original) and |2, p+2h̄k〉 (excited), so the atomic populations will also become spa-

tially separated with time due to their different momentum. It means that a π/2-pulse

effectively operates as an atom beam-splitter. If, however, the pulse has twice that time,
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i.e. it is a π-pulse, then populations will make the transitions: |1, p〉 → |2, p+2h̄k〉 and

|2, p+2h̄k〉→ |1, p〉. This population inversion is effectively an atomic mirror, and, if the

populations were previously set spatially apart by a beam-splitting process, now they will

merge. This is detailed in [140] in the construction of the one of the first Mach-Zehnder

atom-interferometer designs.

In the simplest atom-gravimeter design (release type), there is a vertical high-vacuum

chamber and the atomic sample is initially cooled and trapped on the top. Immediately

after release the Raman π/2-pulses are applied, splitting the cloud into two populations

which fall under gravity, and mid-way on the trajectory the Raman π-pulses are applied,

acting as a mirror. When the two clouds combine, another Raman π/2-pulses are applied

and the total interferometer phase difference observed in the clouds is proportional to

gT 2
fall [141]. This process is shown in Fig. B.1. Other designs are possible, such as

driving the atoms in upwards motion before the fall under gravity (fountain type) or using

time-domain interferometry [142, 143], which have the advantage of enabling devices

even more compact for satellite missions. However, the mechanisms for building such

device and observing the interferometry can be less intuitive.

Figure B.1: General scheme of a Mach-Zehnder atom gravimeter with the atom-release
configuration. Note that it retrieves the absolute gravity value. The current accuracy of

a device from the Observatory of Paris is on the order of 40 nm/s2 [141].



Appendix C

Pointwise information measures applied

to precursor candidates

In this appendix, we present the pointwise information quantities from the earthquake

precursor candidates: tidal variations, b-value anomalies, pre-seismic gravity changes and

preceding seismicity. The definition of the pointwise information measures is presented

in Chapter 4 (Sec. 4.6).

This appendix complements the findings of Chapter 6, where the causal mutual in-

formation, mutual information, transfer entropy and directionality index were applied to

identify the overall information sharing and possible flow of information between seismic

precursor candidates and earthquake occurrence. With the pointwise quantities shown

here, it is possible to distinguish the individual data points contributing most to the over-

all information measures. The pointwise values are displayed next as a colour-code at-

tributed to each data point in the phase-space plot of the precursor with the seismicity

occurrence. Very complex structures can potentially be formed, such as seen for coupled

logistic systems in Chapter 5, referred as causal bubbles in [113, 114] (for the case of

pointwise mutual information). Such structures should not be formed in systems not

causally connected.

For a small amount of geophysical data (4018 points), we are most likely unable

to delineate the boundaries of such causal bubbles, but we may be able to observe if a

concentration of points (in the phase-space) with high pointwise information measures
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is suggested. In particular, if such concentration is also in a subregion of the precursor

domain, it may potentially support earthquake prediction, by defining a range of values in

the precursory activity highly linked to the seismic occurrence.

Tidal triggering of earthquakes

High tidal amplitudes leading to high magnitude events

Two peaks of CaMI were observed, on a delay of 5 days and 25 days.

Delay: 5 days

Results in Figs. C.1 and C.2 show that, although there is a concentration of higher point-

wise mutual information points in the area around 2.1µm/s2 tidal amplitude and max-

imum magnitude above 5.6 for L=2, this disappears for higher symbolic lengths L. No

pattern is formed for the other pointwise information quantities.

Figure C.1: Pointwise mutual information and pointwise transfer entropy for tidal
amplitude (X) leading to high magnitude events (Y). Partition of tidal amplitude is

2.17µm/s2 and of magnitude is 5.6. Time-delay between the time-series is 5 days.
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Figure C.2: Pointwise causal mutual information and pointwise directionality index for
tidal amplitude (X) leading to high magnitude events (Y). Partition of tidal amplitude
is 2.17µm/s2 and of magnitude is 5.6. Time-delay between the time-series is 5 days.
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Delay: 25 days

Results in Figs. C.3 and C.4 show that higher pointwise mutual information occurs for

tidal amplitudes below 2.2µm/s2 associated to high earthquake magnitude (Mw > 5.6),

whereas it is smaller than the average for tidal amplitudes above 2.2µm/s2 associated

to high earthquake magnitude. This pattern occurs for all L. There were only few points

with high pointwise transfer entropy, but they were located at high earthquake magnitudes.

Pointwise CaMI followed the pointwise mutual information for L=2, but could not reveal

a clear pattern for higher L. Pointwise directionality index shows no clear pattern.

Figure C.3: Pointwise mutual information and pointwise transfer entropy for tidal
amplitude (X) leading to high magnitude events (Y). Partition of tidal amplitude is

2.17µm/s2 and of magnitude is 5.6. Time-delay between the time-series is 25 days.
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Figure C.4: Pointwise causal mutual information and pointwise directionality index for
tidal amplitude (X) leading to high magnitude events (Y). Partition of tidal amplitude
is 2.17µm/s2 and of magnitude is 5.6. Time-delay between the time-series is 25 days.
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High tidal amplitudes leading to high cumulative daily magnitudes

In this case the results (Figs. C.5 and C.6) show a higher pointwise mutual information

for the high tidal amplitudes and high cumulative daily magnitude and lower pointwise

mutual information for tidal amplitudes and high cumulative daily magnitude, for L=2.

The pattern is progressively lost as L increases. No pattern is observed for the other

information quantitites, except the pointwise CaMI for L=2 which is dominated by the

pointwise mutual information.

Figure C.5: Pointwise mutual information and pointwise transfer entropy for tidal amp-
litude (X) leading to high cumulative daily magnitude (Y). Partition of tidal amplitude
is 2.37µm/s2 and of cumulative daily magnitude is 102.2. Time-delay between the

time-series is 10 days.
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Figure C.6: Pointwise causal mutual information and pointwise directionality index
for tidal amplitude (X) leading to high cumulative daily magnitude (Y). Partition of
tidal amplitude is 2.37µm/s2 and of cumulative daily magnitude is 102.2. Time-delay

between the time-series is 10 days.
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High tidal amplitudes leading to high seismicity rate

The results, on Figs. C.7 and C.8, show only few points with high pointwise mutual

information, which tend to locate at the region of middle to high tidal amplitude associated

with high seismicity rate. The combination of low tidal amplitude and low seismicity rate

usually has pointwise mutual information lower than the average. Some of the points of

high pointwise mutual information also have high pointwise transfer entropy. Both in

pointwise CaMI and in the pointwise directionality index the combination of high tidal

amplitudes and high seismicity rates yields high values. The effect is more pronounced

for smaller L.

Figure C.7: Pointwise mutual information and pointwise transfer entropy for tidal amp-
litude (X) leading to high seismicity rate (Y). Partition of tidal amplitude is 2.37µm/s2

and of seismicity rate is 27 events/day. Time-delay between the time-series is 9 days.
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Figure C.8: Pointwise causal mutual information and pointwise directionality index for
tidal amplitude (X) leading to high seismicity rate (Y). Partition of tidal amplitude is
2.37µm/s2 and of seismicity rate is 27 events/day. Time-delay between the time-series

is 9 days.
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Anomalies in b-value

Anomaly in b-value as precursor of high magnitude events

The results of the pointwise information measures for this hypothesis are displayed on

Figs. C.9 and C.10. The low values of pointwise mutual information and transfer entropy

are almost uniformly distributed. The few outliers do not exhibit any noticeable pattern.

The same follows for pointwise CaMI and pointwise directionality index.

Figure C.9: Pointwise mutual information and pointwise transfer entropy for b-value
anomaly (X) as precursor of high magnitude events (Y). Partition of b-value anomaly

is 0.32 and of magnitude is 5.6. Time-delay between the time-series is 17 days.
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Figure C.10: Pointwise causal mutual information and pointwise directionality index
for b-value anomaly (X) as precursor of high magnitude events (Y). Partition of b-value
anomaly is 0.32 and of magnitude is 5.6. Time-delay between the time-series is 17

days.
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Anomaly of b-value as precursor of high cumulative daily magnitudes

Figs. C.11 and C.12 present the results of pointwise information measures for this case.

Only about three points of high pointwise mutual information are identified. Although

they reside in the high b-value anomaly – high cumulative daily amplitude quadrant, it

is insufficient to define any pattern. The pointwise transfer entropy remain low (close to

zero) for these points. Pointwise CaMI follows the pointwise mutual information, but the

pointwise directionality index is almost homogeneously low for all points in the dataset.

Figure C.11: Pointwise mutual information and pointwise transfer entropy for b-value
anomaly (X) as precursor of high cumulative daily magnitude (Y). Partition of b-value
anomaly is 0.35 and of cumulative daily magnitude is 102.2. Time-delay between the

time-series is 10 days.
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Figure C.12: Pointwise causal mutual information and pointwise directionality index
for b-value anomaly (X) as precursor of high cumulative daily magnitude (Y). Partition
of b-value anomaly is 0.35 and of cumulative magnitude is 102.2. Time-delay between

the time-series is 10 days.

Anomaly of b-value as precursor of high seismicity rate

The results of this case are shown in Figs. C.13 and C.14. No pattern is observed for

pointwise mutual information and pointwise transfer entropy. The few points diverging



C. POINTWISE INFORMATION MEASURES APPLIED TO PRECURSOR CANDIDATES 189

from the zero mutual information and transfer entropy seem to be located at random in

the phase space. The same happens for pointwise CaMI and directionality index.

Figure C.13: Pointwise mutual information and pointwise transfer entropy for b-value
anomaly (X) as precursor of high seismicity rate (Y). Partition of b-value anomaly is
0.32 and of seismicity rate is 27 events/day. Time-delay between the time-series is 23

days.
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Figure C.14: Pointwise causal mutual information and pointwise directionality index
for b-value anomaly (X) as precursor of high seismicity rate (Y). Partition of b-value
anomaly is 0.32 and of seismicity rate is 27 events/day. Time-delay between the time-

series is 23 days.
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Pre-seismic gravity changes

Anomaly in gravity residuals as precursor of high magnitude events

The results of pointwise information measures for this case are shown in Figs. C.15 and

C.16. The points with higher pointwise mutual information are found in the region of high

gravity residuals and high maximum daily magnitude. Interestingly, the region becomes

more evident as L increases, with these points concentrating in a region with gravity

residuals of 30–40 nm/s2. Some of these points also show high pointwise transfer entropy

for L=2. As L increases the pointwise transfer entropy pattern becomes less evident. The

pointwise CaMI and directionality index follows a similar pattern of the transfer entropy.

Figure C.15: Pointwise mutual information and pointwise transfer entropy for gravity
residuals anomaly (X) as precursor of high magnitude events (Y). Partition of gravity
residuals anomaly is 23.84nm/s2 and of magnitude is 5.6. Time-delay between the

time-series is 8 days.
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Figure C.16: Pointwise causal mutual information and pointwise directionality index
for b-value anomaly (X) as precursor of high magnitude events (Y). Partition of gravity
residuals anomaly is 23.84nm/s2 and of magnitude is 5.6. Time-delay between the

time-series is 8 days.
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Anomaly of gravity residuals as precursor of high cumulative daily

magnitudes

Figs. C.17 and C.18 reveal the results of the pointwise information measures for this

hypothesis. The pointwise mutual information is higher in a region between 20–40nm/s2

for the gravity residuals associated to high cumulative daily magnitude. Also, points of

gravity residuals above 20nm/s2 and high cumulative daily magnitude may have high

pointwise transfer entropy. The pointwise CaMI and directionality index follows similar

pattern.

Figure C.17: Pointwise mutual information and pointwise transfer entropy for gravity
residuals anomaly (X) as precursor of high cumulative daily magnitude (Y). Partition
of gravity residuals anomaly is 23.84nm/s2 and of cumulative daily magnitude is 102.2.

Time-delay between the time-series is 12 days.
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Figure C.18: Pointwise causal mutual information and pointwise directionality index
for gravity residuals anomaly (X) as precursor of high cumulative daily magnitude (Y).
Partition of gravity residuals anomaly is 23.84nm/s2 and of cumulative magnitude is

102.2. Time-delay between the time-series is 12 days.
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Anomaly of gravity residuals as precursor of high seismicity rate

The results of the pointwise measures for this case are shown in Figs. C.19 and C.20.

Once again, high pointwise mutual information is observed for some points above

20nm/s2 associated with high seismicity rate. This time this is not clearly associated

with high pointwise transfer entropy. The pointwise CaMI largely follows the pointwise

mutual information. The directionality index reveals no clear pattern.

Figure C.19: Pointwise mutual information and pointwise transfer entropy for grav-
ity residuals anomaly (X) as precursor of high seismicity rate (Y). Partition of gravity
residuals anomaly is 23.84nm/s2 and of seismicity rate is 31 events/day. Time-delay

between the time-series is 11 days.
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Figure C.20: Pointwise causal mutual information and pointwise directionality index
for gravity residuals anomaly (X) as precursor of high seismicity rate (Y). Partition of
gravity residuals anomaly is 23.84nm/s2 and of seismicity rate is 31 events/day. Time-

delay between the time-series is 11 days.
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Preceding seismicity

High cumulative daily magnitude as precursor of high magnitude

events in future

Figs. C.21 and C.22 are the results of the pointwise information measures for this hy-

pothesis. There are only few points of high pointwise mutual information and pointwise

transfer entropy, so no clear pattern can be discerned. However, in both cases, these points

have shown for the anomalous high cumulative daily magnitude. The same applies for the

pointwise CaMI and directionality index.

Figure C.21: Pointwise mutual information and pointwise transfer entropy for cumu-
lative daily magnitude (X) as precursor of high magnitude events (Y). Partition of cumu-
lative daily magnitude is ∑Mw = 140 and of magnitude is Mw5.6. Time-delay between

the time-series is 11 days.
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Figure C.22: Pointwise causal mutual information and pointwise directionality index
for cumulative daily magnitude (X) as precursor of high magnitude events (Y). Partition
of cumulative daily magnitude is ∑Mw = 140 and of magnitude is Mw5.6. Time-delay

between the time-series is 11 days.
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Low seismicity rate as precursor of high magnitude events in future

The results of this hypothesis are shown in Figs. C.23 and C.24. For all pointwise in-

formational quantities the points receive all about the same value (around 1 for pointwise

mutual information and CaMI and 0 for pointwise transfer entropy and directionality in-

dex). The few outliers do not exhibit any recognisable pattern.

Figure C.23: Pointwise mutual information and pointwise transfer entropy for seismi-
city rate (X) as precursor of high magnitude events (Y). Partition of seismicity rate is 2
events/day and of magnitude is Mw5.6. Time-delay between the time-series is 23 days.
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Figure C.24: Pointwise causal mutual information and pointwise directionality index
for seismicity rate (X) as precursor of high magnitude events (Y). Partition of seismicity
rate is 2 events/day and of magnitude is Mw5.6. Time-delay between the time-series is

23 days.
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Conclusions
The results presented in this appendix refer to the pointwise information measures of

the earthquake precursor candidates investigated (tidal variations, b-value anomalies, pre-

seismic gravity changes and anomalous preceding seismicity) with respect to the earth-

quake occurrences (large event, large cumulative magnitude, high seismicity rate). The

delays and partitions shown here are those of the peaks of CaMI, as shown in Chapter

6. In principle, our goal was to observe the formation of the causal bubbles, i.e. well

defined regions of the phase space with high pointwise information quantities, similarly

to shown in Chapter 5, Figs. 5.9, 5.10, 5.14 and 5.15, when the measures were applied

to coupled logistic maps. Some factors were already expected to make the causal bubble

structures in the plots in this Appendix less evident than those in Chapter 5, such as the

presence of a natural background or measurement noise factor and, especially, the limit-

ation in the number of points (4018 in this case, against 200000 for our simulations with

coupled logistic maps). Indeed, any initial indications of patterns in this appendix still

require further analysis, whenever further data becomes available. Of particular interest

is the case when a specific range of values of the precursor has higher pointwise informa-

tion quantities to the portion of the earthquake occurrences associated to high magnitude

or seismicity. It means that this range of values of the precursor has more associated in-

formation or exchange more information with the potentially destructive seismic events,

therefore we should monitor them more closely. Interestingly there is an initial indic-

ation of this phenomena in our dataset for pre-seismic gravity changes on the order of

20−40nm/s2. This has not been observed for the other precursor candidates.


	Declaration
	Publications
	Abstract
	Acknowledgements
	Foreword
	Glossary
	Introduction
	Motivations
	Objective
	Structure of this thesis
	Summary of results
	Development of a tool for analysis of causality from time-series
	Application to test-bench systems
	Application to precursors and earthquake-causing variables


	Overview of observational seismology
	What is a seismic event?
	Types of seismic source: faulting
	Stress, strain and seismic waves
	Trace, magnitude and intensity
	Earthquake occurrence: location and magnitude distribution
	Foreshocks, aftershocks and swarms
	Gravity and displacement changes
	Exotic phenomena

	Earthquake prediction
	The field of earthquake prediction
	IASPEI list of precursors
	The case for b-value anomalies
	The case for tidal triggering of earthquakes
	The case for pre-seismic gravity anomalies

	Instrumentation in seismology
	Seismometer
	Gravimeter
	Other devices
	Displacement sensors
	Strainmeters
	Tiltmeters



	Time-series considered
	Geophysical time-series
	Seismic data
	Gravity data

	Data pre-processing
	Tidal analysis and removal
	Symbolic encoding and partitioning

	Test-bench dynamical system: Logistic map
	Coupled logistic maps
	Logistic networks


	Information theoretical quantities and causality
	Entropy and Mutual Information
	Transfer Entropy
	Causal Mutual Information (CaMI)
	Local and delayed Causal Mutual Information
	Rate of information measures
	Pointwise information measures
	Algorithm of the method and usage
	Computational demands

	Assessing causality to test-bench systems
	Pseudo-random noise
	Application to coupled logistic maps
	Error levels: uncoupled system
	Diffusive coupling
	CML coupling
	Including dynamical noise
	Connecting a chaotic and an intermittent system

	Application to logistic networks
	Serial network
	Parallel network
	Directed tree network with maximum distance 3
	A variation: periodic channel


	Discussion of results

	Causal analysis of earthquake precursor candidates
	Tidal triggering of earthquakes
	Gutenberg-Richter's b-value temporal variations
	Pre-seismic gravity variations
	Preceding seismicity leading to new events
	Summary

	Conclusions
	Review of context, objective and findings
	Open questions
	Applications to other fields of knowledge

	Bibliography
	Appendix Comment on definitions of disasters and media representation
	Appendix Steps in the development of a Cold Atom Gravimeter
	Appendix Pointwise information measures applied to precursor candidates

